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Light diffraction at mixed phase and absorption gratings in anisotropic media
for arbitrary geometries

G. Montemezzani and M. Zgonik
Nonlinear Optics Laboratory, HPF E17, Institute of Quantum Electronics, Swiss Federal Institute of Technology,

CH-8093 Zu¨rich, Switzerland
~Received 3 June 1996!

The coupled wave theory of Kogelnik@H. Kogelnik, Bell Syst. Tech. J.48, 2909~1969!# is extended to the
case of moderately absorbing thick anisotropic materials with grating vector and medium boundaries arbitrarily
oriented with respect to the main axes of the optical indicatrix. Dielectric and absorption modulation with
common grating vector and of arbitrary relative phase shift is considered. Solutions for the wave amplitudes,
diffraction efficiencies, and angular mismatch sensitivities are given in transmission and reflection geometries.
The main difference of the new results with respect to the expressions valid for isotropic media arise due to the
walk-off between the wave-front and energy propagation directions. The difference is particularly important in
materials with large birefringence, such as organic crystals, ordered polymers, and liquid crystalline cells. The
special case of Bragg diffraction and two-beam coupling at holograms recorded in optically inactive photore-
fractive crystals is analyzed in detail. It is found that the two-beam coupling gain is influenced substantially by
an absorption anisotropy.@S1063-651X~96!10212-9#

PACS number~s!: 42.40.Pa, 42.65.Hw, 42.25.Fx, 42.25.Lc
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I. INTRODUCTION

Scattering of light in thick holographic media has be
the subject of investigation for a long time in the fields
acousto-optics and holographic recording by absorption
photorefractive gratings. The theoretical efforts to und
stand light diffraction in thick media have culminated in t
coupled wave theory of Kogelnik@1#, which applies to iso-
tropic materials. Despite the fact that a large fraction of
materials used for volume holography is optically anis
tropic, only limited effort has been made to theoretically an
lyze the diffraction of light in this kind of media@2–6#.
Kojima @2# analyzed the problem of diffraction of light a
phase gratings in absorptionless anisotropic materials fin
solutions in the Raman-Nath diffraction regime using
phase function method and in the Bragg diffraction regi
using the Born approximation in the undepleted pump lim
Rokushima and Yamakita@3# developed a matrix formalism
to solve the same kind of problems and Johnson and T
guay @4# analyzed phase gratings using a numerical be
propagation method. Glytsis and Gaylord@5# presented a
three-dimensional coupled wave diffraction theory for t
study of cascaded anisotropic gratings and waveguide ge
etries. Vachss and Hesselink@6# considered the case of opt
cally active anisotropic photorefractive media. They fou
solutions for the Bragg diffraction efficiency in the und
pleted pump limit. Dielectric and absorption gratings with
common phase and some special crystal cuts were assu

The advent of materials with strong birefringence, such
liquid crystals, ordered polymers, or organic crystals@7–10#
in the field of volume holography asks for a novel consid
ation of the anisotropy effects. In these materials, not o
anisotropic @11#, but also isotropic Bragg diffraction is
strongly affected by the optical anisotropy. The main rea
lies in the difference between the energy propagation di
tion and the wave-front normal. Many materials also sh
551063-651X/97/55~1!/1035~13!/$10.00
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an anisotropic absorption constant, that is, absorption
pends strongly on the direction of light polarization. A com
plete analysis of dielectric and absorption gratings in ani
tropic materials should include this effect also.

In this paper we develop a coupled wave theory valid
moderately absorbing nonoptically active anisotropic th
media. The phase and absorption gratings in these m
may have an arbitrary relative phase shift. The model is va
for every direction of the grating wave-vector in three d
mensions. The entrance and exit surfaces of the medium
parallel to each other and may have an arbitrary orienta
with respect to the main axis of the optical indicatrix. W
treat the cases of transmission and reflection gratings,
former being characterized by a diffracted beam exiting
medium through the same surface as the transmitted inci
beam, the latter being characterized by a diffracted be
back reflected through the incidence surface. The coup
wave equations are solved for both grating types to give
diffraction efficiency and the angle-mismatch sensitivi
The special case of photorefractive phase gratings is
cussed in a separate section, where we also discuss the
rect expression for the light modulation index that has to
used while considering two-wave mixing processes indu
by self-generated gratings.

Section II brings the basic equations and the derivation
the two coupled wave equations valid, in general, in ani
tropic media. In Sec. III the general solution of the coupl
wave equations for diffraction at transmission gratings is
rived. Section IV is devoted to reflection gratings, while Se
V presents the special cases of Bragg diffraction and tw
beam coupling at photorefractive phase gratings. The lin
propagation of waves is treated in Appendix A, where
derive the relationship between the complex dielectric ten
and the effective absorption constant that describe the pr
gation of a wave submitted to boundary conditions at
entrance surface of the medium.
1035 © 1997 The American Physical Society
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1036 55G. MONTEMEZZANI AND M. ZGONIK
II. BASIC EQUATIONS

We consider a medium containing a phase~refractive in-
dex! and/or an absorption grating. Our analysis treats
case of thick holograms only. An exact definition of a thi
grating has been given by Gaylord and Moharam@12# and
the conditions to be fulfilled areQ5K2ld/(2pn).1 and
r5l2/~L2ns!>10, wheres5Dn for dielectric gratings and
s5Dal/2p for absorption gratings. In our case of anis
tropic materials the refractive index changeDn and the ab-
sorption modulationDa are defined later in connection wit
Eqs. ~41! and ~44!, respectively. The other quantities in th
two above conditions are the medium thicknessd, the
vacuum wavelengthl, the average refractive indexn, the
grating spacingL, and the grating wave vectorK52p/L. We
notice that if the two above conditions are not strictly fu
filled the diffraction may be described by a mixture of Bra
and Raman-Nath regime. In such an intermediate regime
theory presented in this work gives only approximate res
and the diffraction would be calculated more precisely b
rigorous coupled wave analysis similar to the one presen
earlier for the isotropic case@13#.

As shown by Kogelnik@1# for thick gratings it is suffi-
cient to consider the propagation of only two plane wavep
ands. Since we consider the general case of anisotropic
terials the wavesp ands should represent eigenwaves of t
medium. The total electric field amplitude is given by

EW~rW,t !5@EWs~rW !eikWs•rW1EWp~rW !eikWp•rW#e2 ivt1c.c., ~1!

whereEWs andEWp are complex amplitudes cleaned of the a
sorption contribution. This means that they are always c
stant in the absence of nonlinear effects, as explained l
In absorbing crystals the wave vectorskW s andkW p are complex
with the imaginary part, which possibly has a different dire
tion than the real part@14#

kW s5kW s,r1 ikW s,i , kW p5kW p,r1 ikW p,i . ~2!

The real part, as usual, is related to the wave-front pro
gation direction for an eigenpolarization in the crystal, wh
the imaginary part is related to the linear absorption exp
enced by the waves and is calculated as derived in Appe
A. The wave of Eq.~1! has to fulfill the time-independen
vector wave equation

¹W 3~¹W 3EW!2k0
2eJ•EW50, ~3!

whereeJ5 eJ r1 i eJ i is the complex second-rank dielectric te
sor that includes the effects of the material refractive ind
and absorption@15#, and k05v/c is the free-space wav
number. From now on the explicit time dependen
exp~2ivt! will always be dropped. We consider a mediu
containing a phase and/or an amplitude plane hologra
grating. The complex dielectric tensoreJ can then be ex-
pressed as
e
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eJ5@ eJ r
01 eJ r

1 cos~KW •rW !#1 i @ eJ i
01 eJ i

1 cos~KW •rW1f!#

5@ eJ r
01 1

2 eJ r
1~eiKW •rW1e2 iKW •rW!#

1 i @ eJ i
01 1

2 eJ i
1~ei ~KW •rW1f!1e2 i ~KW •rW1f!!, ~4!

where the superscripts 0 and 1 denote the constant and
modulated component, respectively. The grating vectorKW in
Eq. ~4! has an arbitrary direction with respect to the ge
metrical or crystallographic axis of the anisotropic mediu
The absorption grating@modulated term in the imaginar
part of Eq. ~4!# may be phase shifted by a phasef with
respect to the refractive index grating. We may choose
coordinate system to coincide with the main axes of the
tical indicatrix so that the tensoreJ r

0 contains only diagona
elements. In contrast, the modulated parteJ r

1 of the real di-
electric tensor is generally nondiagonal. That is

eJ r
05S e r ,11

0

0
0

0
e r ,22
0

0

0
0

e r ,33
0

D , eJ r
15S e r ,11

1

e r ,12
1

e r ,13
1

e r ,12
1

e r ,22
1

e r ,23
1

e r ,13
1

e r ,23
1

e r ,33
1

D ,
~5!

e.g., nondiagonal elements can be produced by shear ac
tic waves and by space-charge induced electro-optic eff
@16#. For crystalline materials with orthorhombic or high
symmetry the main axes of the imaginary dielectric ten
coincide with those of the real one@15#. For these materials
alsoeJ i

0 andeJ i
1 are diagonal tensors

eJ i
05S e i ,11

0

0
0

0
e i ,22
0

0

0
0

e i ,33
0

D , eJ i
15S e i ,11

1

0
0

0
e i ,22
1

0

0
0

e i ,33
1

D .
~6!

For crystals with lower symmetry the main axes of t
absorption ellipsoid may differ from those of the refracti
index ellipsoid@17# and the tensorseJ i

0 and eJ i
1 may contain

also nondiagonal elements in our coordinate system.
want to consider only materials with positive absorption~no
gain!. This property has to be fulfilled for any wave pola
ization and any position in the crystal, thus giving some co
straints on the elements of the tensorseJ i

0 and eJ i
1,

e i ,kl
0 >e i ,kl

1 >0. ~7!

We proceed by analyzing the coupled wave equations
we insert Eqs.~4! and ~1! into the wave equation~3!. We
notice that the first term of Eq.~3! can be represented in th
following form:

¹W 3~¹W 3EW!

5eikWs•rW$¹W 3¹W 3EWs2 i @~¹W 3EWs!3kW s1¹W 3~EWs3kW s!#

2~EWs3kW s!3kW s%1eikWp•rW$•••%, ~8!

where we have listed only the terms proportional
exp@ikWs•rW# and the second set of curly brackets conta
analogous terms inEWp and kW p . The first term on the right-
hand side of Eq.~8! contains only second-order derivative
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55 1037LIGHT DIFFRACTION AT MIXED PHASE AND . . .
of the wave amplitude and can be neglected applying
slowly varying amplitude approximation. The last term t
gether with the second term of Eq.~3! that contains the con
tribution of the nonmodulated dielectric tensors describe
linear propagation of the wave as discussed in Appendix
For thes wave it is

2@~EWs3kW s!3kW s#e
ikWs•rW5k0

2@ eJ r
01 i eJ i

0#•EWseik
Ws•rW, ~9!

and an analogous expression holds for thep wave.
The second and third terms on the right-hand side of

~8!, which are left, describe the coupling of the waves due
eJ r
1 and eJ i

1. The problem that we are analyzing is interesti
for perfect phase matching and for small phase misma
@Fig. 1~a!#. In this case we write the momentum conservat
equation as

kW p1KW 5kW s1DkW ,

DkW[DkW r1 iDkW i5~kW p,r2kW s,r1KW !1 i ~kW p,i2kW s,i !. ~10!

Using the above arguments Eq.~3! transforms in the two
coupled wave equations

eikWs•rW@~¹W 3EWs!3kW s1¹W 3~EWs3kW s!#

5
k0
2

2
@ i eJ r

1
•EWp2 eJ i

1
•EWpeif#eikWs•rWeiDkW•rW, ~11!

FIG. 1. ~a! Projection of the wave-vector diagram for the hol
graphic interaction. The coordinate axes are parallel to the m

axes of the optical indicatrix. The input surface planezŴ•rW50 does

not necessarily contain the axiszŴ. The vectorskW p,r , kW s,r , KW , and

DkW r do not need to be all coplanar.~b! Unit vectors in direction of

the electric field (eŴ s), the dielectric displacement (dŴ s), the magnetic

field (hŴ s), the energy propagation (uŴ s), the real and imaginary com

ponent of the propagation vector (kŴ s,r ,kŴ s,i) for the waves, and the

input surface normal (zŴ ). It holds eŴ s'uŴ s'hŴ s , dŴ s'kŴ s,r'hŴ s , and

eŴ s•dŴ s5uŴ s•kŴ s,r5cosbs .
e

e
.

q.
o

h
n

eik
W
p•rW@~¹W 3EWp!3kW p1¹W 3~EWp3kW p!#

5
k0
2

2
@ i eJ r

1
•EWs2 eJ i

1
•EWse2 if#eikWp•rWe2 iDkW•rW. ~12!

Using some vector algebra the terms on the left-hand sid
Eq. ~11! can be rewritten as

~¹W 3EWs!3kW s5ukW s,r u H S kŴ s,r• ]Es

]rW
D eŴ s2~eŴ s•kŴ s,r !

]Es

]rW J
1 i ukW s,i u H S k̂s,i• ]Es

]rW D eŴ s2~eŴ s•kŴ s,i !
]Es

]rW J ,
~13!

and

¹W 3~EWs3kW s!5ukW s,r u H S kŴ s,r• ]Es

]rW DeŴ s2S eŴ s• ]Es

]rW D kŴ s,r J
1 i ukW s,i u H S kŴ s,i• ]Es

]rW DeŴ s2S eŴ s• ]Es

]rW D kŴ s,i J ,
~14!

whereEWs5EseŴ s andeŴ s , kŴ s,r , andkŴ s,i are real unit vectors
along the electric-field vector and the real and imagin
wave vectors of the waves, as shown in Fig. 1~b!. ]Es /]rW
[¹W Es is the gradient of the scalar complex wave amplitu
Es . Similar expressions to Eqs.~13! and ~14! hold for the
wavep and the left-hand side of Eq.~12!.

In this paper we consider only waves that are sufficien
far from the absorption resonance of the medium. In t
limit one has only moderate absorption, that isukW s,i u!ukW s,r u
andukW p,i u!ukW p,r u. We can therefore neglect the terms invol
ing ukW s,i u in Eqs. ~13! and ~14!. All relationships derived in
this work are valid in this limit. Summing Eqs.~13! and~14!
and multiplying both sides of Eq.~11! with the unit vector

eŴ s one obtains

2ukW s,r u H ]Es

]rW
•@kŴ s,r2eŴ s~eŴ s•kŴ s,r !#J

5
k0
2

2
@ ieŴ s• eJ r

1
•eŴ p2eŴ s• eJ i

1
•eŴ pe

if#Epe
iDkW•rW, ~15!

where in the terms of the kindeŴ s
T
• eJ r

1
•eŴ p we omit the trans-

pose sign in the first vector in order to simplify the notatio
The left-hand side vector expression in the square brac
gives a vector that is parallel to the energy propagation
rection ~Poynting vector! of the waves @15#. One can write

kŴ s,r2eŴ s~eŴ s•kŴ s,r !5gsuŴ s ~16!

with uŴ s being the unit vector along the Poynting vector@Fig.

1~b!#. Using kŴ s,r•uŴ s5eŴ s•dŴ s5cosbs and kŴ s,r•dŴ s5eŴ s•uŴ s50

we getgs5eŴ s•dŴ s5cosbs. The unit vectord̂s points in the
direction of the electric displacement vector for the waves.
Introducing the unperturbed refractive indicesns andnp seen

in
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1038 55G. MONTEMEZZANI AND M. ZGONIK
by the signal and pump wave, respectively, and withukW s,r u
5k0ns and ukW p,r u5k0np , the coupled wave equation
~11! and ~12! are rewritten as

]Es

]rW
•uŴ s5

k0
4nsgs

@ ieŴ s• eJ r
1
•eŴ p2eŴ s• eJ i

1
•eŴ pe

if#Epe
iDkW•rW,

~17!

]Ep

]rW
•uŴ p5

k0
4npgp

@ ieŴ p• eJ r
1
•eŴ s2eŴ p• eJ i

1
•eŴ se

2 if#Ese
2 iDkW•rW,

~18!

wheregp5eŴ p•dŴ p . Equations~17! and~18! describe the cou-
pling of two plane waves in any general geometry in ani
tropic media containing phase and/or absorption grating
is important to notice that the coupling terms describe
projection of the amplitude gradients along the Poynting v
tor direction of the corresponding wave and not along
wave-vector direction as in the theory of Kogelnik@1# that
applies to isotropic materials only.

III. TRANSMISSION GRATINGS

A. Mixed transmission gratings

We consider first transmission gratings, that is both bea
s and p leave the material through the same surface. M
precisely, this geometry is characterized by the condit

(uŴ p•zŴ )(uŴ s•zŴ )5cosupcosus.0, wherezŴ is the unit vector in
the direction of the normal to the entrance surface of
waveP in the holographic medium~Fig. 2!. We assume the

medium to be infinite in the directions normal tozŴ . We look

FIG. 2. Beam propagation directions for transmission hologra
and reflection holograms.
-
It
e
-
e

s
e
n

e

for a general expression for the holographic diffraction e
ciency under pump depletion conditions. To find the spa
evolution of the signal waveS we extractEp from Eq. ~17!
and insert it into Eq.~18! to get the second-order differentia
equation

S ]2Es

]rW2
•uŴ sD •uŴ p2 i S ]Es

]rW
•uŴ sD ~DkW•uŴ p!

1
k0
2

16nsnpgsgp
Es@Ar

22Ai
212iArAicosf#50,

~19!

where ]2/]rW2[¹W ^ ¹W and ^ indicates outer product. The
coupling constantsAr andAi are defined as

Ar5eŴ s•eJ r
1
•eŴ p5eŴ p•eJ r

1
•eŴ s , ~20!

Ai5eŴ s•eJ i
1
•eŴ p5eŴ p•eJ i

1
•eŴ s , ~21!

where the second equalities are valid because the ten
eJ r
1 and eJ i

1 are symmetric. The boundary conditions for d
fraction from a transmission grating are

Es~zŴ•rW50!50 ~22!

and

]Es

]rW
•uŴ s~zŴ•rW50!5

k0
4nsgs

@ iAr2Aie
if#Ep0e

iDkW•rW, ~23!

whereEp05Ep(zŴ•rW50) is the pump wave amplitude at th
entrance face of the anisotropic holographic medium. T
general solution of the differential equation~19! has the form

Es5Es1exp~gW 1•rW !1Es2 exp~gW 2•rW !, ~24!

whereEs1 andEs2 are complex constants. The direction
the vectorsgW 1 andgW 2 is not strictly defined because insertin
Eq. ~24! into Eq. ~19! one obtains constraints only on th

scalar productsgW •uŴ s and gW •uŴ p . In view of the boundary
conditions given by Eqs.~22! and~23! it is useful to choose

gW 1 andgW 2 parallel to the surface normalzŴ , which gives

gW 1,25S i DkW•uŴ p
2 cosup

6 iWD zŴ , ~25!

whereW5AW2 is a complex quantity with

W25S DkW•uŴ p
2 cosup

D 21 k0
2

16nsnpgsgpcosuscosup

3~Ar
22Ai

212iArAicosf! ~26!

and

cosus5zŴ•uŴ s , cosup5zŴ•uŴ p . ~27!

Note that all projection cosines in Eq.~26! are taken with
respect to the Poynting vector direction and not with resp

s
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55 1039LIGHT DIFFRACTION AT MIXED PHASE AND . . .
to the wave-vector direction. The constantsEs1 andEs2 are
obtained by using Eqs.~22! and ~23! and one finds

Es152Es25
k0

8nsgscosus
eiDkW•rW i

Ar1 iAie
if

W
Ep0 , ~28!

whererW i is a position vector on the entrance surface defin

by zŴ•rW50. The constantEs1 is rW independent and Eq.~24!
fulfills Eq. ~19! only if DkW•rW i50 for all rW i , thus constraining
the real and imaginary part of the vectorDkW to be parallel to

the normal to the surfacezŴ , as shown in Fig. 1~a!. This
property is a direct consequence of the fact that waves
gratings have infinite extent in the transversal directions. T
wave-front propagation directionkW s of the waves is now
well defined and is obtained with Eq.~10!. Inserting the
complex amplitudes~28! and the complex gain constan
~25! into Eq. ~24! one finds the general solution for the ev
lution of the signal wave amplitude

Es~rW !5
k0

8nsgscosus

Ar1 iAie
if

W
ei @~Dkr1 iDki !/2#zŴ•rW

3@eiW~zŴ•rW !2e2 iW~zŴ•rW !#Ep0 , ~29!

where we have defined the real scalar mismatch quant

Dkr andDki byDkW r5DkrzŴ andDkW i5DkizŴ . In analogy, one
can also find the wave amplitude of the transmitted pu
wave, which is

Ep~rW !5e2 i @~Dkr1 iDki !/2#zŴ•rWF2W1~Dkr1 iDki !

4W
eiW~zŴ•rW !

1
2W2~Dkr1 iDki !

4W
e2 iW~zŴ•rW !GEp0 . ~30!

One can now calculate the diffraction efficiency defin
as the ratio of the output-signal intensity to the incide
pump intensity

h5
I s~zŴ•rW5d!

I p~zŴ•rW50!
5

EsEs* nsgs
Ep0Ep0* npgp

cosus
cosup

e22kWs,i•rW, ~31!

where we recall thatgs and gp are projection cosines be

tweeneŴ anddŴ @Eq. ~16!#. The factor cosus/cosup is an obliq-
uity term that assures consistent results in a general
when we are interested in the optical energy flow through
input and output surfaces of the medium. The te
nsgs/npgp has been often overlooked in the literature. N
glecting this term is allowed only in isotropic materials or
anisotropic materials in the case of a configuration fully sy

metric with respect to the axiszŴ and the optical indicatrix.
Using the expression for the diffraction efficiency~31! and
the solution for the signal wave amplitudeEs(rW) ~29! one
obtains the general expression
d

nd
e

es

p

-

se
e

-

-

h~zŴ•rW5d!

5
k0
2

16nsnpgsgpcosuscosup

Ar
21Ai

222ArAisinf

uW2u

3$sin2~Re@W#d!1sinh2~ Im@W#d!%e2~as1ap!d.

~32!

The quantitiesas5ukW s,i u andap5ukW p,i u are the effective am-
plitude absorption constants experienced by the signal w

s and pump wavep in directionzŴ , respectively, as derived in
Appendix A @Eq. ~A9!#, that is

as5
k0~eŴ s•eJ i

0
•eŴ s!

2nsgsucosusu
, ap5

k0~eŴ p•eJ i
0
•eŴ p!

2npgpucosupu
. ~33!

It should be noted that the effective absorption constants
the wavess andp differ even in a fully isotropic situation if
their directions of propagation are not symmetric with r

spect to the surface normalzŴ , as is expected due to a differ
ent propagation distance of the two waves inside the abs
ing medium.

Equation ~32! describes completely the diffraction at
mixed phase and absorption transmission grating in an
tropic media. As an example, Fig. 3 shows that the to
diffraction efficiency strongly depends on the phase shiff
between phase and absorption grating, which is in agreem
with an analysis of mixed phase and absorption gratings
isotropic media by Guibelalde@18#. This behavior is easily
explained by the interference of the waves scattered off
phase and absorption grating, respectively.

FIG. 3. Mixed transmission grating. Diffraction efficiency vs th
real grating mismatch parameterDkr for three values of the phase
shift angle f between phase and absorption gratin
Parameters: Ar5231025, Ai5131025, l5633 nm, d51 cm,
as50.4 cm21, ap50.7 cm21, ns52.2, np52.0, gs51.0, gp50.95,
us510°, andup5240°.



on
io

e
tio

ffi-
n
ta

i

-

ct

sin

m
e-
an-

in
e
n-
nd

sig-
c-
a
e-
the

ant
m

ly
oid

the
our
e
the

g-

1040 55G. MONTEMEZZANI AND M. ZGONIK
B. Transmission gratings
with refractive index modulation only

We consider here the case where the grating consists
of a refractive index modulation. In absence of absorpt
modulation we haveAi50 and the quantityW2 can be sim-
plified and rewritten as

W25
1

d2
~n21j21 ix2!, ~34!

where we have defined the real quantities

n25
k0
2Ar

2

16nsnpgsgpcosuscosup
d2, ~35!

j25
Dkr

22Dki
2

4
d25FDkr

2

4
2

~ap2as!
2

4 Gd2, ~36!

and

x25
DkW r•DkW i

2
d25FDkr~ap2as!

2 Gd2. ~37!

The diffraction efficiency of Eq.~32! reads then

h~d!5
n2

A~n21j2!21x4

3H sin2S ~n21j2!1A~n21j2!21x4

2 D 1/2
1sinh2S 2~n21j2!1A~n21j2!21x4

2 D 1/2J
3e2~as1ap!d. ~38!

Note that the arguments of the sin2 and sinh2 functions are
always real althoughj2 andx2 can be negative numbers. W
notice also that even in absence of absorption modula
there is still a term proportional to sinh2. This term takes
accurately into account the effect on the diffraction e
ciency of a different absorption constant for the pump a
signal waves. It vanishes if the effective absorption cons
seen by the two waves is the same~as5ap5a, x250!, in
which case Eq.~38! simplifies further to

h~d!5
sin2An21j2

~11j2/n2!
e22ad. ~39!

Equation~39! has exactly the same form as the one given
Ref. @1#. However the quantitiesn2, j2, anda are defined
differently. The quantityj2 in this case reduces to

j25
Dkr

2

4
d2, ~40!

n2 is redefined according to Eq.~35! with the projection co-
sines given by Eq.~27!, and the effective amplitude absorp
tion constanta is given by Eq.~A9!.
ly
n

n

d
nt

n

A further simplification is obtained in the case of perfe
Bragg matching~DkW r50W , j250!. In this case Eq.~39! be-
comes

h~d!5sin2S pArd

2l~nsnpgsgpcosuscosup!
1/2De22ad, ~41!

wherel is the vacuum wavelength. The argument of the
function is of the form ~pDnd/l cosu! in analogy with
Ref. @1#, with Dn5Ar /[2(nsnpgsgp)

1/2] and cosu
5~cosuscosup!

1/2. In nonabsorbing materials the maximu
possible diffraction efficiency is exactly 100% for phas
only gratings, regardless of the fact whether isotropic or
isotropic diffraction processes are considered.

The effect of the background absorptionas andap on the
Bragg-angle selectivity of a phase-only grating is shown
Fig. 4 @Eq. ~38!#. The main effect of absorption is to reduc
the maximum diffraction efficiency. In addition, a broade
ing of the Bragg selectivity curve is observed if signal a
pump are absorbed differently (asÞap). For a given total
absorption (as1ap) the more favorable diffraction effi-
ciency is found when the absorption difference between
nal and pump is maximum. A strong difference in the effe
tive absorption for the two waves may be observed in
number of crystals under anisotropic Bragg diffraction g
ometries. It should be noted that, despite the fact that
mismatch termj2 in Eq. ~36! contains the term (ap2as),
there is no shift in the Bragg angle for (asÞap), i.e., the
maximum diffraction efficiency is still obtained forDkr50.
The absorption characteristics can introduce a signific
shift in the direction for which one observes the maximu
diffraction efficiency only when the grating strengthn ex-
ceedsp/2. However, for absorbing materials it is usual
convenient to reduce the thickness of the material and av
this regime.

To visualize the essential features brought about by
material anisotropy we compare in a concrete example
theory for anisotropic media with Kogelnik’s coupled wav
theory for isotropic materials. We choose the example of
organic material 4-N,N-dimethylamino-48-N-methyl-

FIG. 4. Effect of absorption on diffraction efficiency and Brag
angle selectivity. Parameters:Ar5531025, Ai50, l5633 nm,
d51 cm, ns52.2, np52.0, gs51.0, gp50.95, us510°, and
up5240°.
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55 1041LIGHT DIFFRACTION AT MIXED PHASE AND . . .
stilbazolium tosylate~DAST! @19# which has a very strong
birefringence. At l5860 nm, n152.315, n251.660, and
n351.604@20#. For a crystal cut along the dielectric princ
pal axes (x1 ,x2 ,x3) and pump and scattered signal bea
with kW vectors in the 1,3 plane and directed at625° to thex3
axis one obtainsnp5ns52.119. The energy propagatio

vectorsuŴ p anduŴ s are then directed at644.2° to thex3 axis,
giving a big walk-off angle of the order of 20° an
gs5gp50.945. Figure 5 compares the dependence of
diffraction efficiency on refractive index changeDn as ob-
tained from our new results given by Eq.~41! and from Eq.
~47! in Ref. @1#. It becomes clear that in such highly birefrin
gent materials the use of Kogelnik’s expressions leads
large errors even in such fully symmetric beam geometri

C. Transmission gratings with absorption modulation only

In this case one hasAr50. The expression for the diffrac
tion efficiency differs from Eq.~38! only by a ~2! sign

h~d!5
2n2

A~n21j2!21x4

3H sin2S ~n21j2!1A~n21j2!21x4

2 D 1/2
1sinh2S 2~n21j2!1A~n21j2!21x4

2 D 1/2J
3e2~as1ap!d. ~42!

Here

FIG. 5. Diffraction efficiency vs refractive index changeDn
using our coupled wave theory for anisotropic materials~solid line!
and the coupled wave theory of Kogelnik~dashed line!. The dif-
fraction is modeled for the organic crystal 4-N,N-dimethylamino-
4-N-methyl-stilbazolium tosylate ~DAST! with symmetric
p-polarized signal and pump wave propagating in the 1,3 pl
(zŴ5xŴ3) and the grating wave vector parallel to the 1 ax
Parameters: Ai50, l5860 nm, d51 cm, as5ap50, and
/(kŴ s , xŴ3)52/(kŴ p , xŴ3)525°, which gives ns5np52.119,
gs5gp50.945, andus52up544.2°.
s

e

to
.

n25
2k0

2Ai
2

16nsnpgsgpcosuscosup
d2 ~43!

is a negative number, whilej2 andx2 are still given by Eqs.
~36! and ~37!, respectively. In the limit of Bragg condition
fulfillment and no absorption difference between the tw
waves~j250, x250!, Eq. ~42! reduces to

h~d!5sinh2S pAid

2l~nsnpgsgpcosuscosup!
1/2De22ad.

~44!

In analogy with Ref.@1# the argument of the sinh function i
of the form~Dad/2 cosu! with Da5pAi /l(nsnpgsgp)

1/2 and
cosu5~cosuscosup!

1/2.

IV. REFLECTION GRATINGS

A. Mixed reflection gratings

Reflection gratings are characterized by the conditio

uŴ p•zŴ5cosup.0 anduŴ s•zŴ5cosus,0. As shown in Fig. 2,
we assume the medium to be a plane parallel plate of th
nessd with surfaces oriented in arbitrary directions with r
spect to the optical main axes and of infinite lateral dime
sions. Let the pump wavep enter the holographic medium

from the face defined byzŴ•rW50. The boundary conditions
valid for reflection gratings are then

Es~zŴ•rW5d!50 ~45!

and

]Es

]rW
•uŴ s~zŴ•rW50!5

k0
4nsgs

@ iAr2Aie
if#Ep0e

iDkW•rW, ~46!

whereEp05Ep(zŴ•rW50). Proceeding in the same way as f
transmission holograms we insertEs5Es1exp(gW1•rW)
1Es2 exp(gW2•rW) into the second-order differential equatio
~19! and use the boundary conditions~45! and~46! to obtain
the general solution for the evolution of the signal wa
amplitude

Es~rW !5
k0

4nsgscosus

3
Ar1 iAie

if

S Dkr1 iDki
2 D @eiWd2e2 iWd#1W@eiWd1e2 iWd#

3ei @~Dkr1 iDki !/2#zŴ•rW@eiW~zŴ•rW2d!2e2 iW~zŴ•rW2d!#Ep0 ,

~47!

where we have made use again of the property that the ve

DkW is constrained to be parallel tozŴ , so thatDkW r5DkrzŴ and

DkW i5DkizŴ . The quantityW5AW2 is the same as given in
Eq. ~26!, which for reflection gratings we can rewrite as

e
.
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W25S Dkr1 i ~as1ap!

2 D 21 k0
2

16nsnpgsgpcosuscosup

3~Ar
22Ai

212iArAicosf!, ~48!
ed

ni

ac
io

s
-

ul
a

where we have used Eqs.~2! and ~10! andkW s,i52aszŴ , kW p,i

51apzŴ . In analogy to Eq.~30!, the evolution of the pump
wave amplitude is obtained as
Ep~rW !5F @2W1~Dkr1 iDki !#e
iW~zŴ•rW2d!1@2W2~Dkr1 iDki !#e

2 iW~zŴ•rW2d!

@2W1~Dkr1 iDki !#e
2 iWd1@2W2~Dkr1 iDki !#e

iWd Ge2 i @~Dkr1 iDki !/2#zŴ•rWEp0 . ~49!
-

e.
The diffraction efficiency of a reflection hologram is defin
as

h5
I s~zŴ•rW50!

I p~zŴ•rW50!

5
EsEs* nsgs
Ep0Ep0* npgp

Ucosuscosup
U, ~50!

where again an obliquity factor is introduced in the defi
tion. Inserting the complex signal wave amplitude~47! into
Eq. ~50! one obtains the general expression for the diffr
tion efficiency of a mixed phase and absorption reflect
grating in anisotropic media with absorption anisotropy

h5
2k0

2~Ar
21Ai

222ArAisinf!

16nsnpgsgpcosuscosup

1

R
$sin2~Re@W#d!

1sinh2~ Im@W#d!%, ~51!

where

R5F ~Dkr !
2

4
1

~as1ap!
2

4 G$sinh2~ Im@W#d!

1sin2~Re@W#d!%1uW2u$cosh2~ Im@W#d!

2sin2~Re@W#d!%1Re@W#F ~as1ap!

2
sin~2 Re@W#d!

1
Dkr
2

sinh~2 Im@W#d!G1Im@W#

3F ~as1ap!

2
sinh~2 Im@W#d!2

Dkr
2

sin~2 Re@W#d!G .
~52!

The overall diffraction efficiency of mixed reflection grating
depends again on the phase shiftf between phase and ab
sorption grating components, as shown in Fig. 6 whereh is
plotted versus the material thickness. An example of ang
mismatch characteristics for reflection gratings is plotted
an inset in the same figure.

B. Reflection gratings with refractive index modulation only

In analogy with Sec. III B we can writeW2

5(n21j21 ix2)/d2, with n2 given by Eq.~35! being now a
negative real number,
-

-
n

ar
s

j25F ~Dkr !
22~as1ap!

2

4 Gd2, ~53!

and

x252FDkr~as1ap!

2 Gd2. ~54!

The diffraction efficiency is found from Eq.~51! as

h5
2n2

d2R
$sin2~Re@W#d!1sinh2~ Im@W#d!%, ~55!

whereR is obtained from~52! and

Re@W#56
1

d S (n21j2)1A~n21j2!21x4

2 D 1/2, ~56!

Im@W#56
1

d S 2~n21j2!1A~n21j2!21x4

2 D 1/2, ~57!

FIG. 6. Mixed reflection grating. Diffraction efficiency vs thick
nessd for three values of the phase-shift anglef between phase
and absorption grating. Parameters:Ar5631025, Ai5231025,
l5633 nm,Dkr50,as50.7 cm21, ap51.0 cm21, ns52.2,np52.0,
gs51.0, gp50.95,us52170°, andup5240°. The inset shows the
dependence of the diffraction efficiency on the phase mismatchDkr
for d51 cm,f5290°, and the other parameters stayed the sam
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where the signs~1! or ~2! have to be selected in order to b
consistent with the quadrant of the complex quantityW2. For
the practically most interesting case of perfect phase ma
ing and no loss, Eq.~55! reduces to

h5tanh2A2n25tanh2S pArd

2l~nsnpgsgpucosusucosup!
1/2D .

~58!

C. Reflection gratings with absorption modulation only

For eJ r
150I the quantityn2 is given by Eq.~43! and is now
a
ti
or
f
li
iv
e
e
in

th
th
it

r,

lec

t
s

h-

a positive real number. The diffraction efficiency is then e
pressed as

h5
n2

d2R
$sin2~Re@W#d!1sinh2~ Im@W#d!%, ~59!

with R, j2, x2, Re[W], and Im[W] obtained from Eqs.~52!,
~53!, ~54!, ~56!, and ~57!, respectively. Under Bragg inci
dence one hasDkW r50W and x250. It holds further that
Da,as , which impliesn21j2,0 in this case and Eq.~59!
transforms for Bragg incidence into
h5
n2

2j21A2~n21j2!~as1ap!d cothA2~n21j2!2~n21j2!coth2A2~n21j2!
. ~60!
med
-

and
ent

di-

e
the
in
V. PHOTOREFRACTIVE PHASE GRATINGS

In this section we use the expressions derived above
apply them as an example to a special kind of phase gra
that has found much attention in recent years. The phot
fractive effect@16# produces a phase grating as a result o
photoinduced internal space-charge electric field and the
ear electro-optic effect. In crystalline materials the refract
index change is usually described in terms of the chang
the real part of the inverse dielectric tensor that can be
pressed as a function of the scalar amplitude of the s
soidal space-charge electric fieldEsc as

D eJ r
215 rJ effEsc. ~61!

The second-rank tensorrJ eff is a function of the direction
KW of the photorefractive grating and takes into account
effect of mechanical deformations of the materials due to
presence of the periodic field. It can be expressed explic
in its elementsr i j

eff as @21#

r i j
eff5r i jk

S KŴ k1pi jkl8E KŴ lAkm
21Bm , ~62!

whereKŴ 5KW /uKW u is the unit vector along the grating vecto
r i jk
S is the clamped third-rank electro-optic tensor,pi jkl8E is the

modified elasto-optic tensor@22#, andA km
21 andBm are de-

fined as

Aik5Ci jkl
E KŴ jKŴ l and Bi5eki jKŴ kKŴ j , ~63!

with C i jkl
E being the elastic stiffness tensor at constant e

tric field, andei jk being the piezoelectric stress tensor.
To be able to relate our expressions of Secs. III and IV

photorefractive gratings we need to express the ten
eJ r
15eJr2eJ r

05DeJr as a function of the tensorD eJ r
21 con-

tained in Eq.~61!. To do this we start fromeJ r• eJ r
2151J and

differentiate with respect to the electric field to obtain

D~ eJ r• eJ r
21!50I5D eJ r• eJ r

211 eJ r•D eJ r
21. ~64!
nd
ng
e-
a
n-
e
in
x-
u-

e
e
ly

-

o
or

Multiplying each term on the right-hand side witheJr we
obtain

D eJ r52~ eJ r•D eJ r
21
• eJ r !>2~ eJ r

0
•D eJ r

21
• eJ r

0!, ~65!

where the second equality is valid because we assu
i eJ r

1i!i eJ r
0i , which is usually fulfilled in photorefractive ex

periments. Using Eqs.~65!, ~61!, and~20! one can now de-
termine the form of the coupling constantAr for a photore-
fractive grating

Ar52eŴ s•eJ r
0
•rJ eff

•eJ r
0
•eŴ pEsc52ns

2np
2gsgpr effEsc,

~66!

wheregs5eŴ s•dŴ s , gp5eŴ p•dŴ p , ns and np are the refractive
indices seen by the signal and pump wave, respectively,
r eff represents now a scalar effective electro-optic coeffici
defined as

r eff5dŴ s•rJ
eff
•dŴ p . ~67!

The scalar electro-optic coefficient is therefore related

rectly to thedŴ -vector directions~polarization! of the two
waves, and not to the electric-field-vector directions.

A. Photorefractive diffraction efficiency

Equations~66! and~67! can be inserted into Eqs.~38! and
~55! to obtain the diffraction efficiency of photorefractiv
transmission and reflection gratings. We give here only
special cases valid for phase-matched Bragg diffraction
nonabsorbing materials. One gets

h5sin2F p

2l S gsgp
cosuscosup

D 1/2~nsnp!3/2r effEscdG ~68!
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1044 55G. MONTEMEZZANI AND M. ZGONIK
for transmission grating in a medium of thicknessd, and

h5tanh2F p

2l S gsgp
cosuscosup

D 1/2~nsnp!3/2r effEscdG ~69!

for reflection gratings.

B. Photorefractive two-beam coupling

Two-beam coupling differs from the situations treated
now in the boundary conditions. For two-beam coupling
wave s is injected and has a nonzero amplitude at the
trance surface of the medium. Under such conditions
observes often an energy and/or phase transfer from
wave to the other, which depend on the phase relation
between the waves and the grating. It is easy to show
maximum energy coupling between the wavesp and s is
observed when the interference fringes produced byp ands
are shifted in phase by6p/2 with respect to a phase gratin
or by 0 orp with respect to an absorption grating@16#. One
can distinguish two different beam coupling situations. In
first the two waves interact with a preexisting~fixed! grating
that is not modified by the waves themselves. In the seco
the waves themselves generate the grating at which the
teract. The latter case occurs, for instance, for photoref
tive two-beam coupling and for many other nonlinear-opti
effects.

We first comment on the case of fixed gratings. The
gredients to solve this problem have all been given in Se
III and IV. Let us suppose we want to know the amplitude
the signal waves after coupling with the wavep at a fixed
transmission grating. This amplitude is a coherent supe
sition of the transmitted amplitude when the wavep is not
present and the amplitude diffracted from the wavep in di-
rection of the signal waves, when the latter has zero ampl
tude at the entrance face. Therefore one first calculates
transmitted amplitudeEs,t using Eq.~30! letting s take the
role of the pump wave in Sec. III. Second, the amplitudeEs,d
scattered fromp into the general direction ofs is calculated
using Eq.~29! extracting the correct wave propagation dire
tion kW s,d from Eq.~10!. Finally the two waves are added an
combined with the phase factors to obtainEs,texp(ikWs•rW)
1Es,dexp(ikWs,d•rW) as the electric-field amplitude of the waves
at the exit of the grating region. In case of perfect pha
matchingkW s,d[kW s and the transmitted and in-diffracted wav
are not distinguishable. In general, geometries where the
ter equality holds can be found also for small deviation fro
perfect phase matching of the two coherent waves to
preexistent grating. We notice that for reflection hologra
the same procedure outlined above is followed. One u
Eqs.~49! and~47! instead of Eqs.~30! and~29! to obtain the
transmitted and in-diffracted amplitudes.

The case where a dynamic grating is recorded by the
interacting waves themselves is more interesting. Th
waves automatically fulfill the real phase-matching condit
k̂s,r2kW p,r6KW 50W . We will treat here only the case where
phase grating is created as a result of the photorefrac
effect. The theory of Kukhtarev-Vinetskii@23# describes the

formation of a space-charge fieldEW sc(rW)5KŴ Esc(rW) under the
l
e
-
e
ne
ip
at

e

d,
in-
c-
l

-
s.
f
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e
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e
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action of two interfering waves. The scalar space-cha
electric field has the form

Esc~rW !5mEscexp~ iKW •rW !1c.c.

5m~Esc,r1 iEsc,i !exp~ iKW •rW !1c.c., ~70!

where the real component cos(KW •rW) of the exp(iKW •rW) term is
in phase with the light interference fringes generated by
wavess andp, andEsc,r ,Esc,i are the in-phase and 90° ou
of-phase components of the space-charge field amplitude
spectively. The quantitym is a modulation index and Eq
~70! is valid only form!1. In this section we will be limited
to the calculation of the two-beam coupling gain in this lim
~undepleted pump approximation!. The modulation indexm
needs some further consideration. In Ref.@23# and all later
theories of the photorefractive effect, the modulation ind
was taken as the modulation of the light intensity inside
material. This driving quantity was used to calculate the p
toexcitation rate of charge carriers with densityN as]N/]t
}I 0(11m cosKW •rW). This assumption is allowed in the cas
of isotropic materials and a transmission grating geome
However, the rate of photoexcitation actually depends on
locally dissipated energy and not on the net energy fl
through a material. This fact is particularly evident when o
considers a reflection grating recorded by two counterpro
gating waves of equal intensity. In this case there is no
energy flux~no light intensity! in any direction but there are
still photoexcitations. It is therefore more correct to assu
]N/]t}U0(11m cosKW •rW) and thus to definem as the modu-
lation of the dissipated optical energy densityU in the ma-
terial. The dissipated optical energy is related to the ima
nary dielectric tensoreJ i

0 @17#

U~rW,t !} 1
2 e0EW~rW,t !•eJ i

0
•EW* ~rW,t !, ~71!

whereEW(rW,t) is given by Eq.~1! ande0 is the permittivity of
vacuum. Equation~71! can be used to calculate the numb
density of mobile photoexcited charge carriers if every a
sorbed photon produces such a carrier, i.e., when the q
tum efficiency for photoexcitation is unity. However, in mo
photorefractive materials the quantum efficiencyf has often
been observed to be considerably lower, in the extreme c
of photorefractive polymers the usual quantum efficienc
are in the order of 1024–1022 @10#. It is therefore necessar
to replace the tensoreJ i

0 in Eq. ~71! by a similar tensorkJ that
takes into account only those useful absorption proces
that give rise to movable charge carriers. One can define
elements ofkJ as

kkl5fkle i ,kl
0 , ~72!

where the quantitiesfkl describe the polarization depen
dence of the quantum efficiency. In Eq.~72! no summing
over equal indices is performed. The characteristics of
tensorkJ may be determined by photoconductivity measu
ments as a function of light polarization. If the quantum e
ficiency for photogeneration of charge carriers is unity, t
tensorseJ i

0 and kJ are identical. In view of the above argu
mentation we can now write the useful dissipated energy
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U~rW,t !}EW~rW,t !•kJ•EW* ~rW,t !5U0S 11
m

2
eiK

W
•rW1

m*

2
e2 iKW •rWD ,

~73!

where for simplicity we have used a complex modulati
indexm that takes fully into account all phase shifts in t
light fringes due to phase coupling between the waves. O
can assume thatm is real at the input surface of the medium
Using Eqs.~73! and ~1! we find the general expression fo
the modulation of a transmission grating as

m~rW !

5
2Es~rW !Ep* ~rW !~eŴ s•kJ•êp!e

2~as1ap!zŴ•rW

uEp~rW !u2~eŴ p•kJ•eŴ p!e22apzŴ•rW1uEs~rW !u2~eŴ s•kJ•eŴ s!e22aszŴ•rW
.

~74!

For small modulation one has

uEpu2~eŴ p•kJ•eŴ p!exp~22apzŴ•rW !

@uEsu2~eŴ s•kJ•eŴ s!exp~22aszŴ•rW !
~75!

and Eq.~74! simplifies to

m~rW !5
2Es~rW !

Ep~rW !

~eŴ s•kJ•eŴ p!

~eŴ p•kJ•eŴ p!
e~ap2as!zŴ•rW. ~76!

Note that the modulation index that would be obtained
using the light intensity as a driving term is simila
to Eq. ~76! but contains the ratio (ns/np)

1/2 instead of

(eŴ s•kJ•eŴ p)/(eŴ p•kJ•eŴ p). Using Eqs.~66!, ~17!, and ~18! and
neglecting any absorption modulation we obtain the coup
wave equations for transmission grating two-beam coup
in photorefractive materials

]Es

]rW
•uŴ s5

k0
4nsgs

@2 iRmEpEsce
~as2ap!zŴ•rW#, ~77!

]Ep

]rW
•uŴ p5

k0
4npgp

@2 iRm*EsEsc* e
~ap2as!zŴ•rW#, ~78!

whereR5n s
2n p

2gsgpr eff and r eff is given by Eq.~67!. If the
inequality~75! is fulfilled one can neglect the second diffe
ential equation~78! and by using Eq.~76! the equation for
the evolution of the signal wave amplitude becomes

]Es

]rW
•uŴ s5

k0R

2nsgs
a@Esc,i2 iEsc,r #Es , ~79!

where we have introduced the quantity

a5
~eŴ s•kJ•eŴ p!

~eŴ p•kJ•eŴ p!
. ~80!

Equation~79! has a solution of the form

Es~zŴ•rW5d!5Es0e
~G/2!deidd, ~81!
e

y

d
g

with G being the small-signal gain expressed as

G5
2p

l

nsnp
2

cosus
gpareffEsc,i , ~82!

which is positive if the productr effEsc,i is positive, and

d52
p

l

nsnp
2

cosus
gpareffEsc,r ~83!

describes the phase drift of the wave along the propaga
direction. We recall thatus is the angle between the Poyntin

vector of the waveS and the normal to the surfacezŴ . It
should be noted that, while the sign ofEsc,r does not depend
on whether the space-charge field is created in the phot
fractive crystal by means of electron charge transport or h
charge transport, the sign ofEsc,i is opposite for the two
cases. One hasEsc,i,0 for dominant electron transport, an
Esc,i.0 for dominant hole transport. Therefore the sign
the gainG is influenced accordingly. We also notice that t
constantsG andd of Eqs.~82! and~83! are influenced by the
dielectric anisotropy within the factors cosus andgp and are
influenced by the absorption anisotropy within the quan
a. Figure 7 shows an example of the dependence of the
recting factora of Eq. ~80! on the half-angleu between the
energy propagation directions of the wavess andp. We have
assumed a material cut along the main axesx1 ,x2 ,x3 of the
absorption ellipsoid and symmetric propagation in thex2 ,x3
plane, as shown in the inset of the figure. The waves h
polarization in the same plane so that only the elementsk22
and k33 of the tensorkJ are active. The different curves i
Fig. 7 are for different values of the anisotropy ratiok33/k22.
If the absorption is isotropic~dashed curve! the factora re-

duces to (eŴ s•eŴ p), corresponding to the term obtained fo

FIG. 7. Dependence of the correcting factora5(eŴ s•kJ•eŴ p)/

(eŴ p•kJ•eŴ p) on the half angle between thes andp waves in a sym-
metric geometrical configuration. Propagation in thex2 ,x3 plane
with p-polarized waves is assumed, as shown in the inset.
dashed curve fork33/k2251 corresponds to the case of isotrop
photoexcitation, for which the conventional projection factora

5(eŴ s•eŴ p) applies.
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isotropic theories. It can be noticed that in case of absorp
anisotropy the correction due to the factora can be quite
relevant if the directions of the optical electric field vecto

eŴ s andeŴ p deviate from a main axis of the modified absor
tion tensorkJ. For k33/k2251/2 the correction with respect t

(eŴ s•eŴ p) is about 25% already if the deviation angles are
the order of 20°.

We finally express the evolution of the signal wave inte
sity I s . It is obtained using Eq.~82! for the gain and the
definition of the optical electric field and propagation vec
~1! and ~2!, which gives

I s~zŴ•rW5d!5I s0e
~G22as!d, ~84!

with I s05I s(zŴ•rW50). The same path can be followed al
for two-beam coupling in a reflection grating configuratio
For smallm, one obtains in analogy to Eq.~84!

I s~zŴ•rW50!5I s~zŴ•rW5d!e2~G12as!d, ~85!

whereG is still given by Eq.~82! and it should be remem
bered that cosus is negative for reflection gratings.

VI. CONCLUSIONS

We have extended the coupled wave theory of Kogel
@1# to the case of anisotropic materials with grating vec
and medium oriented in arbitrary directions. Spatial modu
tion of both refractive index and absorption constant with
common grating wave vector and an arbitrary phase s
between each other have been allowed for. Solutions for
wave amplitudes, diffraction efficiencies, and angular se
tivities have been given in transmission and reflection c
figurations for the case of moderately absorbing materi
The special case of phase holograms in optically inac
photorefractive crystals has been considered in detail rev
ing simple expressions permitting one to calculate diffract
efficiencies and small-signal two-beam coupling gains in a
given geometrical situation. The insights provided by t
present approach should be particularly important for
analysis of all anisotropic diffraction processes and also
isotropic interaction of light with volume holograms re
corded in materials with strong birefringence, such as
ganic crystals, ordered polymers, and liquid crystalline ce
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APPENDIX: LINEAR PROPAGATION

We treat here the problem of linear propagation in a m
dium with a complex dielectric constant with the aim
extracting a relationship between the imaginary part of
dielectric tensoreJ i

0 and the effective amplitude absorptio
constantsa used in this paper. We consider a wave of t
form EW exp@i(kW•rW2vt)# with complex wave vector of the
form kW5kW r1 ikW i . If this wave is an eigenwave of the me
n

f

-

r

.

k
r
-
a
ift
e
i-
-
s.
e
al-
n
y
e
e
f

r-
.

-

e

dium it has to fulfill the wave equation~3!, which translates
into

2E@~eŴ3~kW r1 ikW i !!3~kW r1 ikW i !#e
ikW r•rWe2 k̂i•rW

5k0
2@eJ r

01 i eJ i
0#EeŴeik

W
r•rWe2kW i•rW, ~A1!

where we have usedEW5EeŴ . Equation~A1! is the same as
Eq. ~9! of Sec. II. The real part of the space-independ
terms in~A1! reads

E@~eŴ3kW r !3kW r2~eŴ3kW i !3kW i #52Ek0
2eJ r

0
•eŴ , ~A2!

Under our general assumption of moderate absorption (ukW i u
!ukW r u), we recognize Eq.~A2! as the equation describin
linear propagation in lossless anisotropic media, as can
checked in many textbooks@14,15,24#. The remaining
~imaginary! terms of Eq.~A1! are related to the effective
scalar absorption constant we are looking for, they read

2 iE@~eŴ3kW r !3kW i1~eŴ3kW i !3kW r #5 iEk0
2eJ i

0
•eŴ . ~A3!

We are considering here a boundary value problem, the w
should have a constant intensity at the input surface of

medium defined by the conditionzŴ•rW50 ~Fig. 1!. A constant
intensity implies

uEWeikW•rWu~zŴ•rW50!5const, ~A4!

which can be fulfilled only if the vectorkW i is parallel to the

surface normalzŴ . One can write

kW i5a~6zŴ !, ~A5!

where the effective absorption constanta is positive, and the
~1! sign in Eq.~A5! holds if the wave enters the medium

the planezŴ•rW50, while the~2! sign holds if it enters at the

plane zŴ•rW5d and exits atzŴ•rW50. Therefore, the vectors
kW r andkW i are in general, noncollinear and the wave is inh
mogeneous even in the absence of a nonlinear grating
serting Eq.~A5! into Eq. ~A3! and using the vector identity
(aW 3bW )3cW5(aW •cW )bW 2(bW •cW )aW one gets

ak0n@~eŴ •zŴ !kŴ r1~eŴ•kŴ r !zŴ22~kŴ r•zŴ !eŴ #52k0
2eJ i

0
•eŴ ,

~A6!

wheren is the refractive index seen by the wave and we ha

usedkW r5k0nkŴ r . We are looking for an expression fora,

which is obtained by multiplying Eq.~A6! on the left byeŴ

2ak0n@~eŴ•zŴ !~kŴ r•eŴ !2~kŴ r•zŴ !#52k0
2~eŴ•eJ i

0
•eŴ !. ~A7!

The expression in the square brackets on the left-hand sid

related again to the unit vectoruŴ along the energy propaga
tion vector~Poynting vector! of the wave and can be rewrit
ten as



n
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@~eŴ•zŴ !~kŴ r•eŴ !2~kŴ r•zŴ !#5zŴ @eŴ~kŴ r•eŴ !2kŴ r #52g~zŴ•uŴ !

52g cosu, ~A8!

where the second equality makes use of Eq.~16! and the
angle u is defined by the last equality. We recall thatg

5eŴ•dŴ , with dŴ being the unit vector pointing in the directio
of the dielectric displacement vector~polarization!. Combin-
s

ch

.

ing Eqs. ~A7! and ~A8! we obtain finally the value ofa
which fulfills Eq. ~3!, that is

a5
k0~eŴ•eJ i

0
•eŴ !

2ngucosuu
5

p~eŴ•eJi
0
•eŴ !

lngucosuu
, ~A9!

wherel is the vacuum wavelength. Equation~A9! can also
be used to derive the elements of the tensoreJ i

0 from mea-
surements of the amplitude absorption constanta for se-
lected wave propagation directions and polarizations.
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