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Light diffraction at mixed phase and absorption gratings in anisotropic media
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The coupled wave theory of Kogelnjk. Kogelnik, Bell Syst. Tech. %8, 2909(1969] is extended to the

case of moderately absorbing thick anisotropic materials with grating vector and medium boundaries arbitrarily
oriented with respect to the main axes of the optical indicatrix. Dielectric and absorption modulation with
common grating vector and of arbitrary relative phase shift is considered. Solutions for the wave amplitudes,
diffraction efficiencies, and angular mismatch sensitivities are given in transmission and reflection geometries.
The main difference of the new results with respect to the expressions valid for isotropic media arise due to the
walk-off between the wave-front and energy propagation directions. The difference is particularly important in
materials with large birefringence, such as organic crystals, ordered polymers, and liquid crystalline cells. The
special case of Bragg diffraction and two-beam coupling at holograms recorded in optically inactive photore-
fractive crystals is analyzed in detail. It is found that the two-beam coupling gain is influenced substantially by
an absorption anisotropj/S1063-651X96)10212-9

PACS numbgs): 42.40.Pa, 42.65.Hw, 42.25.Fx, 42.25.Lc

[. INTRODUCTION an anisotropic absorption constant, that is, absorption de-
pends strongly on the direction of light polarization. A com-
Scattering of light in thick holographic media has beenplete analysis of dielectric and absorption gratings in aniso-
the subject of investigation for a long time in the fields of tropic materials should include this effect also.
acousto-optics and holographic recording by absorption and In this paper we develop a coupled wave theory valid for
photorefractive gratings. The theoretical efforts to underinoderately absorbing nonoptically active anisotropic thick
stand light diffraction in thick media have culminated in the media. The phase and absorption gratings in these media
coupled wave theory of KogelniKL], which applies to iso- may have an arbitrary relative phase shift. The model is valid
tropic materials. Despite the fact that a large fraction of thefor every direction of the grating wave-vector in three di-
materials used for volume holography is optically aniso-mensions. The entrance and exit surfaces of the medium are
tropic, only limited effort has been made to theoretically ana-parallel to each other and may have an arbitrary orientation
lyze the diffraction of light in this kind of medi§2—6].  with respect to the main axis of the optical indicatrix. We
Kojima [2] analyzed the problem of diffraction of light at treat the cases of transmission and reflection gratings, the
phase gratings in absorptionless anisotropic materials findinfiprmer being characterized by a diffracted beam exiting the
solutions in the Raman-Nath diffraction regime using amedium through the same surface as the transmitted incident
phase function method and in the Bragg diffraction regimebeam, the latter being characterized by a diffracted beam
using the Born approximation in the undepleted pump limit.back reflected through the incidence surface. The coupled
Rokushima and Yamakite8] developed a matrix formalism wave equations are solved for both grating types to give the
to solve the same kind of problems and Johnson and Tardiffraction efficiency and the angle-mismatch sensitivity.
guay [4] analyzed phase gratings using a numerical bearfThe special case of photorefractive phase gratings is dis-
propagation method. Glytsis and Gaylorf] presented a cussed in a separate section, where we also discuss the cor-
three-dimensional coupled wave diffraction theory for therect expression for the light modulation index that has to be
study of cascaded anisotropic gratings and waveguide geomised while considering two-wave mixing processes induced
etries. Vachss and Hesselifk] considered the case of opti- by self-generated gratings.
cally active anisotropic photorefractive media. They found Section Il brings the basic equations and the derivation of
solutions for the Bragg diffraction efficiency in the unde- the two coupled wave equations valid, in general, in aniso-
pleted pump limit. Dielectric and absorption gratings with atropic media. In Sec. Ill the general solution of the coupled
common phase and some special crystal cuts were assumedave equations for diffraction at transmission gratings is de-
The advent of materials with strong birefringence, such asived. Section 1V is devoted to reflection gratings, while Sec.
liquid crystals, ordered polymers, or organic crysfals1Q]  V presents the special cases of Bragg diffraction and two-
in the field of volume holography asks for a novel consider-beam coupling at photorefractive phase gratings. The linear
ation of the anisotropy effects. In these materials, not onlypropagation of waves is treated in Appendix A, where we
anisotropic [11], but also isotropic Bragg diffraction is derive the relationship between the complex dielectric tensor
strongly affected by the optical anisotropy. The main reasorand the effective absorption constant that describe the propa-
lies in the difference between the energy propagation direcgation of a wave submitted to boundary conditions at the
tion and the wave-front normal. Many materials also showentrance surface of the medium.
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Il. BASIC EQUATIONS e=[€%+ &1 cogK-P)]+i[€%+& ! cogK T+ ¢)]

We consider a medium containing a phaefractive in- —[e%+1¢ 1(e”<“r+ efiK_~r')]
dex and/or an absorption grating. Our analysis treats the e
case of thick holograms only. An exact definition of a thick +i[eo+ig 1(gl(R-1+6) | g=i(K-T+0)) 4
i 2 ’

grating has been given by Gaylord and Mohargifl] and
" : 2
the conditions to be fulfilled ar@=K“Ad/(27n)>1 and  \yhere the superscripts 0 and 1 denote the constant and the

P i)i/ (anol)‘;lob whetr_eo=Ant.for di(lalectric gratingfs and o dulated component, respectively. The grating veKtan

;7_ 2 7tT .02 athsorpflont_gra_lndgs. ?1 our casg t?1 anblso— Eq. (4) has an arbitrary direction with respect to the geo-
ropic materials the refractive index c a_nge and e ab- — metrical or crystallographic axis of the anisotropic medium.
sorption modulatiom\« are defined later in connection with The absorption gratingmodulated term in the imaginary
Egs. (41 and(44),_ respectively. The o_ther qu_antities in the part of Eq.(4)] may be phase shifted by a phagewith

two above colnd|t{omnsthare the med:{um t.thlc.kréeﬂ;,s :Ee respect to the refractive index grating. We may choose our
vactl_Jum waveleng d, th € a\{[garage refrac i\éf_'g /e:, We coordinate system to coincide with the main axes of the op-
grating spacing\, and the grating wave vectér=2a/A. We tical indicatrix so that the tensaf® contains only diagonal

?ﬁ’t'geththztf;f thte two abtt))ve(:j Conqt;tl?jns are r.“it strl(;tlg ful- elements. In contrast, the modulated péttof the real di-
ed the difiraction may be described by a mixture of bragg g e cyric tensor is generally nondiagonal. That is

and Raman-Nath regime. In such an intermediate regime the

theory presented in this work gives only approximate results

and the diffraction would be calculated more precisely by a _ 0 -1 7 7 1

. . .. = 0 € 22 O €. = € 12 € 22 € 23

rigorous coupled wave analysis similar to the one presented r o |’ r A A N

earlier for the isotropic cadd 3]. 0 0 €33 €13 €r23 €r33
As shown by Kogelnik 1] for thick gratings it is suffi-

cient to consider the propagation of only two plane wapes e.g., nondiagonal elements can be produced by shear acous-

?nQSI. ?}nce we cons&derhthelgeneral catse_of anlsotroplfct?ahc waves and by space-charge induced electro-optic effects
ena’s the wavep ands Shoulid represent eigenwaves o e[16]. For crystalline materials with orthorhombic or higher

medium. The total electric field amplitude is given by symmetry the main axes of the imaginary dielectric tensor
coincide with those of the real orj@5]. For these materials

0 1 1 1
€11 0 0 €11 €12 €13

. 5 o o o o el i
S(F,t)=[€S(F)e'ks"+Sp(F)e'kp‘r]e"‘”‘+c.c., (1) alsoe; ande; are diagonal tensors
€1, g) 0 €11 ? 0

> > <0_ \ <l__ :
where& and £, are complex amplitudes cleaned of the ab- €= 0 €22 0| &= 0 €z ?
sorption contribution. This means that they are always con- 0 0 €33 0 0 €33
stant in the absence of nonlinear effects, as explained later. (6)
In absorbing crystals the wave vectégsandk,, are complex For crystals with lower symmetry the main axes of the
with the imaginary part, which possibly has a different direc-apsorption ellipsoid may differ from those of the refractive
tion than the real paiftl4] index ellipsoid[17] and the tensorg? and €' may contain

also nondiagonal elements in our coordinate system. We
want to consider only materials with positive absorption
gain). This property has to be fulfilled for any wave polar-
ization and any position in the crystal, thus giving some con-

The real part, as usual, is related to the wave-front propaStraints on the elements of the tensé&isand &/,
gation direction for an eigenpolarization in the crystal, while
the imaginary part is related to the linear absorption experi-
enced by the waves and is calculated as derived in Append
A. The wave of Eq.(1) has to fulfill the time-independent
vector wave equation

ke=Ksr+iKsi, kp=Kp +iKp, - 2

€= €l =0. (7)

e proceed by analyzing the coupled wave equations and
we insert Eqs(4) and (1) into the wave equatioi(3). We
notice that the first term of Eq3) can be represented in the
following form:

VX (VX E)—k3e E=0, (€I —

VX(VXE)
where€= €, +i €, is the complex second-rank dielectric ten- = €/*s (VX Vx &—i[(V X &) X K+ V X (Esx Kq)]
sor that includes the effects of the material refractive index s R r
and absorptior{15], and ko= w/c is the free-space wave — (EsXkg) X Ksp + €507 {-- -1, (8)

number. From now on the explicit time dependence . .
exp(—i wt) will always be dropped. We consider a medium Wherg we have listed only the terms proportional to
containing a phase and/or an amplitude plane holographi@XHiks ] and the second set of curly brackets contains
grating. The complex dielectric tens@ can then be ex- analogous terms &, andk,. The first term on the right-

pressed as hand side of Eq(8) contains only second-order derivatives
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ee (VX &,) X Ky + V x (E,XKy)]

kb . s i ek
=EO[iE}lfs—E’ilfse"d’]e'kp're"“'r. (12)

Using some vector algebra the terms on the left-hand side of
Eqg. (12) can be rewritten as

. s L s dEg\. . »  dEg
(ngs)stzlks,r| ks,r' = es_(es'ks,r) T
or or
. N JEs\~ . o JEg
+||ks,i| ks,i’ ? es_(es'ks,i) ? f

(13

and

. . ~ dEg\. [+ JEg\»
Vx(ngks):“(s,r' ks,r' —= |6 | € ks,r

FIG. 1. (a) Projection of the wave-vector diagram for the holo-
graphic interaction. The coordinate axes are parallel to the main

2 . 5 JEg) . s JEs|
axes of the optical indicatrix. The input surface plah€=0 does +1 |ks,i|{ ( ks,i‘ of )es_ €s* Ela )ks,i]i
not necessarily contain the axts The vectorslzp,,, lzs,r, K, and
AIZr do not need to be all coplandhb) Unit vectors in direction of (14

o © where &,=E6; and &, K, andk; are real unit vectors

field (hs), the energy propagationif), the real and imaginary com-  along the electric-field vector and the real and imaginary

ponent of the propagation vectdy(; ,Ks,) for the waves, and the ~ Wave Vectors of the wavs, as shown in Fig. (b). JE¢/ar

input surface normal ). It holds &L Gl h, doL k., Lh,, and = VEs s the gradient of the scalar complex wave amplitude
- - ' E,. Similar expressions to Eq$13) and (14) hold for the

wavep and the left-hand side of Eq412).

In this paper we consider only waves that are sufficiently

the electric field és), the dielectric displacemenﬁg, the magnetic

&5 dg=Ug- K = C0Bs.

of the wave amplltu_de and can_be _neglected applying e, tom the absorption resonance of the medium. In this

slowly varying amplitude approximation. The last term to- . . . - -

gether with the second term of E@) that contains the con- IMit one has only moderate absorption, thafks,|<|ks,|

tribution of the nonmodulated dielectric tensors describe th@nd|kp i|<[kp,|. We can therefore neglect the terms involv-

linear propagation of the wave as discussed in Appendix Aing |k ;| in Egs.(13) and (14). All relationships derived in

For thes wave it is this work are valid in this limit. Summing Eq§l3) and(14)
o o and multiplying both sides of Eq11) with the unit vector

—[(Exks) xkslesT=kg[ € {+i€ 7]- &€, (9) & one obtains

and an analogous expression holds for pherave. 2“2 | l?_Es -[AIZ 3 (é ﬁ )]
The second and third terms on the right-hand side of Eq-'"S"'| oF sro EsiEs ST

(8), which are left, describe the coupling of the waves due to

€' and €. The problem that we are analyzing is interesting KS o s a g e AR

for perfect phase matching and for small phase mismatch =5 L6 &6~ 6 & -6 7]E ™, (19

[Fig. 1(@)]. In this case we write the momentum conservation

equation as where in the terms of the kinél - € - &, we omit the trans-

. . pose sign in the first vector in order to simplify the notation.

kp+K=ks+ Ak, The left-hand side vector expression in the square brackets
gives a vector that is parallel to the energy propagation di-

AK=AK, +iAK; :(ﬁp‘r_ |25Yr+ K)+i(|2p,i - lzs,i)- (10)  rection(Poynting vector of the waves [15]. One can write

Using the above arguments E) transforms in the two Ks,r = 85( 85 Ks,r) = 0l (16)
coupled wave equations . . . ] .
with g being the unit vector along the Poynting vedtBig.

ks T[(VX E) X ket VX (EXKy)] 1(b)]. Using ks ;- ts=85- ds=coss and Ky , - ds= 8- Gs=0
2 we getg,= és-dsz cosfBs. The unit vectorfjS points in the
_ ?o [i grl'gp_ ?ilw‘fpei ¢1eiks TeiAR-T, (11) direction of the electric displacement vector for the wave

Introducing the unperturbed refractive indicesandn, seen
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Transmission Hologram for a general expression for the holographic diffraction effi-
ciency under pump depletion conditions. To find the spatial
evolution of the signal wav& we extractE, from Eq. (17)
and insert it into Eq(18) to get the second-order differential
equation

PEg ~

af’z .uS .
Lk

16nsnpgsgp

g

, IEq ARG
p=i| 7 "Us|( )
EJA?— A2+ 2iA,Acosp]=0,

(19

where #/9f?>=V®V and ® indicates outer product. The
coupling constanté, andA; are defined as

2 r o1 2
€y=6p- € -6, (20

A= E18,=8, 15, (20

where the second equalities are valid because the tensors
€} and € are symmetric. The boundary conditions for dif-
fraction from a transmission grating are

FIG. 2. Beam propagation directions for transmission holograms Es({-7=0)=0 (22)
and reflection holograms.

and
by the signal and pump wave, respectively, and \/Wq;r| 9Es 5 0o ” ART
=kons and |I2p'r|:k0np, the coupled wave equations pf s({-r=0)= TR LA — A€ “]En e ™, (23
(11) and(12) are rewritten as

et

whereE o= Ep(Z- r=0) is the pump wave amplitude at the
JEg 4 ko .- A A A E e ; ; . ;
— U= [i6 grl.ép_és. gil.é’pe'ﬂEpelAk‘r, entrance face of the anisotropic holographic medium. The
or 4nggs an general solution of the differential equati@d) has the form
Es=Eaexp(y:-1)+Es exp(y,-F), (24)
JE, - K N A s .~ e
an -Gp=4n Og [i€, e.e— €p- el.ee P ETIAKT, whereEg; andEg, are complex constants. The direction of
pIp

(18) the vectorsy,; andy, is not strictly defined because inserting
Eqg. (24) into Eg. (19) one obtains constraints only on the

scalar productsy-ug and y- ﬁ In view of the boundary

whereg,=€,-d, . Equations17) and(18) describe the cou- conditions given by Eqg22) and(23) it |s useful to choose

pling of two plane waves in any general geometry in aniso-
tropic media containing phase and/or absorption gratings. l§; and y, parallel to the surface normal which gives

is important to notice that the coupling terms describe the

projection of the amplitude gradients along the Poynting vec- R AIZ Up N

tor direction of the corresponding wave and not along the Y27\ 1 5 co, *iW ¢, (25
wave-vector direction as in the theory of Kogelrik| that

applies to isotropic materials only. whereW= W? is a complex quantity with
I1l. TRANSMISSION GRATINGS 2 AK- Ejp k2
A. Mixed transmission gratings 2 co9y, 16nsnpgsgp003930039
We consider first transmission gratings, that is both beams X (Af—Ai2+ 2iAA;cosp) (26)

s and p leave the material through the same surface. More
precisely, this geometry is characterized by the conditior®nd

(Up- £)(Us- §) = cosh,cos8>0, where{ is the unit vector in e R
the direction of the normal to the entrance surface of the COfs={-Us, COHp={-Up. (27)

wave P in the holographic mediurfFig. 2. We assume the Note that all projection cosines in E(6) are taken with

medium to be infinite in the directions normal foWe look  respect to the Poynting vector direction and not with respect
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to the wave-vector direction. The constakig andE,, are 0.06
obtained by using Eq$22) and(23) and one finds

iA al®
Ko N A +iA€e

Ea=~Ew= 8N,0sC0Hs W PO

(28) 0.04 |
wherer is a position vector on the entrance surface defined
by -F=0. The constanEg, is r independent and E¢24)

fulfills Eq. (19) only if Ak-f,=0 for all f;, thus constraining
the real and imaginary part of the vectdk to be parallel to

0.02 +

Diffraction efficiency

the normal to the surfacé, as shown in Fig. (). This
property is a direct consequence of the fact that waves and 4,k
gratings have infinite extent in the transversal directions. The 15

wave-front propagation directioﬁS of the waves is now
well defined and is obtained with Eq10). Inserting the
complex amplitudeg28) and the complex gain constants  FIG. 3. Mixed transmission grating. Diffraction efficiency vs the
(25) into Eqg.(24) one finds the general solution for the evo- real grating mismatch paramet&k, for three values of the phase-
lution of the signal wave amplitude shift angle ¢ between phase and absorption grating.
Parameters: A,=2x10"° A;=1x10"% A=633 nm, d=1 cm,
. as=0.4 cm, @,=0.7 cm !, ng=2.2,n,=2.0,gs=1.0, g,=0.95,
el[(Ake +iAk)2]E T 6s=10°, andd,=—40°.

E(F)= ko Ar+iAiei¢
(M= 8n,0<CO; w

X [eW(E N g WENE 29 ,Z.F=d)
K2 AZ+ AZ—2AA;sing

where we have defined the real scalar mismatch quantities = >
16n4n,059,C0SHCOSH,, |WA|

Ak, andAk; byAI2r=AkrAgZ andAEi=Aki2. In analogy, one
can also find the wave amplitude of the transmitted pump X {sir?(Rg W]d) + sint?(Im[W]d)}e~ (@s+ap)d,
wave, which is

(32

eiW(AfF) R R

4w The quantitiesys=|Ks;| anda, =k, ;| are the effective am-
2W— (A, +iAk) Cwin plitude absorption constants egxpenenced by the signal wave

+ AW e Epo- (30) s and pump wave in direction, respectively, as derived in

Appendix A[Eq. (A9)], that is
One can now calculate the diffraction efficiency defined

as the ratio of the output-signal intensity to the incident- ~ g n ~epn
pump intensity ko(&5-€ - &) Ko(€p-€ - €p)
A= T 1 =~ 1 -
S 2ng cost| P 2n,gp|cod|

E (r»):e—i[(Akr+iAki)/2]2.r‘[2W+(Akf+iAki)
p

(33

o E E* CO$ e72k5’i‘rl (31) . .

-F=0) po=polpYp p It should be noted that the effective absorption constants for
the wavess andp differ even in a fully isotropic situation if
their directions of propagation are not symmetric with re-

. IS(Z'F:d) . ESE:nsgs CO
{

where we recall thags and g, are projection cosines be- .
spect to the surface normég) as is expected due to a differ-

tweene andd [Eq. (16)]. The f_actor COQS/COS?P is an oblig- ent propagation distance of the two waves inside the absorb-
uity term that assures consistent results in a general ca.?ﬁg medium

yvhen we are interested in the optical energy flow through the Equation (32) describes completely the diffraction at a
input and output surfaces of the _med'“m- The M ixed phase and absorption transmission grating in aniso-
nsgs/_npgp _has be(_en often overIO(_)k(_ed In the IlteraFure. N.e'tropic media. As an example, Fig. 3 shows that the total
gIeptmg th|s term s alllowed only in Isotropic mgterlals OriN yiffraction efficiency strongly depends on the phase sift
anisotropic materials in the case of a configuration fully SYMpetween phase and absorption grating, which is in agreement
metric with respect to the axi§ and the optical indicatrix. with an analysis of mixed phase and absorption gratings in
Using the expression for the diffraction efficient31) and isotropic media by Guibelaldgl8]. This behavior is easily

the solution for the signal wave amplitudg(F) (29) one  explained by the interference of the waves scattered off the
obtains the general expression phase and absorption grating, respectively.
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B. Transmission gratings
with refractive index modulation only

We consider here the case where the grating consists only

of a refractive index modulation. In absence of absorptio
modulation we havé\,=0 and the quantity/* can be sim-
plified and rewritten as

1 :
Wo= 3 (V24 E2+ix?), (39)
where we have defined the real quantities
k3A2
V2= v d?, (35)
16n¢n,0:9,C080sCOHY,,
kA, A (el o
4 4 4 ’
and
XZZAkréAki dzz[Akr(azp—as) s (a7

The diffraction efficiency of Eq(32) reads then

V2

(P + )+ P+ )7+ )"
2

n(d)

12

1/2}

Note that the arguments of the %iand sinR functions are
always real althouglg? and y? can be negative numbers. We

><rsin2

— (PN PN
2

+sinhz(

x g~ (astap)d (39

notice also that even in absence of absorption modulatio

there is still a term proportional to sifihThis term takes

accurately into account the effect on the diffraction effi-
ciency of a different absorption constant for the pump and®

signal waves. It vanishes if the effective absorption consta
seen by the two waves is the safig=a,=a, ¥*=0), in
which case Eq(38) simplifies further to

Siné\v2+ fz

—2ad
(1+ &21v?) '

(39

n(d)= e

Equation(39) has exactly the same form as the one given i
Ref. [1]. However the quantities?, &2, and « are defined
differently. The quantity? in this case reduces to

AK?
4

& d?, (40)

12 is redefined according to E¢35) with the projection co-
sines given by Eq(27), and the effective amplitude absorp-
tion constantx is given by Eq.(A9).

AND M. ZGONIK

0.5

n

0.01 |

Diffraction efficiency

:_f'xas = op=15cm!

0.001 b~

I ol n 1
Aky [em1]

-10

FIG. 4. Effect of absorption on diffraction efficiency and Bragg-
angle selectivity. ParametersAr=5><10*5, A;=0, A=633 nm,
d=1 cm, ng=2.2, n,=2.0, gs=1.0, g,=0.95, 6,=10°, and
0,=—40°.

A further simplification is obtained in the case of perfect
Bragg matching(Ak, =0, £=0). In this case Eq(39) be-
comes

wAd

—2ad
2\ (NgN ,0s9,COH5COH,,) /2 €

n(d)=sir?

(41)

where\ is the vacuum wavelength. The argument of the sin
function is of the form(wAnd/\ cosd) in analogy with
Ref. [1], with An=A/[2(ngn,0:0,)"] and co®
=(cosescoa9p)1’2. In nonabsorbing materials the maximum
possible diffraction efficiency is exactly 100% for phase-
only gratings, regardless of the fact whether isotropic or an-
isotropic diffraction processes are considered.

The effect of the background absorptiagand «, on the
Bragg-angle selectivity of a phase-only grating is shown in
Fig. 4[Eq. (38)]. The main effect of absorption is to reduce
the maximum diffraction efficiency. In addition, a broaden-
H1g of the Bragg selectivity curve is observed if signal and
pump are absorbed differentlyx(+ ). For a given total
absorption @s+a,) the more favorable diffraction effi-
iency is found when the absorption difference between sig-
n‘?al and pump is maximum. A strong difference in the effec-
tive absorption for the two waves may be observed in a

number of crystals under anisotropic Bragg diffraction ge-
ometries. It should be noted that, despite the fact that the
mismatch term¢? in Eq. (36) contains the term dp— ay),
there is no shift in the Bragg angle fow(# «;), i.e., the
maximum diffraction efficiency is still obtained faxk,=0.

The absorption characteristics can introduce a significant
Nshift in the direction for which one observes the maximum
diffraction efficiency only when the grating strengthex-
ceedsm/2. However, for absorbing materials it is usually
convenient to reduce the thickness of the material and avoid
this regime.

To visualize the essential features brought about by the
material anisotropy we compare in a concrete example our
theory for anisotropic media with Kogelnik’'s coupled wave
theory for isotropic materials. We choose the example of the
organic  material ~ AN,N-dimethylamino-4-N-methyl-
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T T T T T T _ k2A2
or 1 2= o1 d2 (43)
. 16n3n,959,COHCOH,,
\\ Kogelnik

08 AN E . . . . .
% is a negative number, whil& and y? are still given by Egs.
§ T (36) and (37), respectively. In the limit of Bragg condition
£ osf 1 fulfillment and no absorption difference between the two
s waves(£2=0, ¥*=0), Eq. (42) reduces to
B This work
S o4} ,
= N ’7TA|d
a d)=sint? e 24,

7(d) 2\ (NgN0s0,CO0scOH,,) M2
02}k \ (44)
0.0 , , , In analogy with Ref[1] the argument of the sinh function is
0 1 2 3 4 5 of the form(A ad/2 co®) with Aa=mA;/\(ngh,g:9,) ? and
10% An cos 6= (cosco,) 2.
FIG. 5. Diffraction efficiency vs refractive index changen IV. REELECTION GRATINGS
using our coupled wave theory for anisotropic materfatdid line) '
and the coupled wave theory of Kogelni@ashed ling The dif- A. Mixed reflection gratings

fraction is modeled for the organic crystalNiN-dimethylamino-
4-N-methyl-stilbazolium tosylate (DAST) with symmetric . . ~
p-polarized signal and pump wave propagating in the 1,3 plandi,-{=c09,>0 and Us- {=c0s9;<<0. As shown in Fig. 2,
({=%X;) and the grating wave vector parallel to the 1 axis. We assume the medium to be a plane parallel plate of thick-
Parameters: Aj=0, A=860 nm, d=1 cm, as=a,=0, and nessd with surfaces oriented in arbitrary directions with re-
£ (Ks, X3)=—2(K,, X3)=25°, which gives ng=n,=2.119, spect to the optical main axes and of infinite lateral dimen-
0s=0,=0.945, andd= — 6,=44.2°. sions. Let the pump wavp enter the holographic medium

Reflection gratings are characterized by the conditions

from the face defined b;? r=0. The boundary conditions
stilbazolium tosylatg DAST) [19] which has a very strong valid for reflection gratings are then
birefringence. AtA=860 nm, n;=2.315, n,=1.660, and

n;=1.604[20]. For a crystal cut along the dielectric princi- Es(z F=d)=0 (45)
pal axes i,X;,X3) and pump and scattered signal beams

with k vectors in the 1,3 plane and directedte25° to thex;  and

axis one obtainsn,=ng=2.119. The energy propagation

vectorsti, andd; are then directed at44.2° to thexg axis, JEs ~ =~~~ ko ié KT

giving a big walk-off angle of the order of 20° and yf -us(g-r—O)—4nSgs[|Ar—Aie 1Epoe™", (46)

gs=0,=0.945. Figure 5 compares the dependence of the

diffraction efficiency on refractive index changen as ob- s L

tained from our new results given by E@1) and from Eq.  WhereEy=Ey(¢-r=0). Proceeding in the same way as for
(47) in Ref.[1]. It becomes clear that in such highly birefrin- transmission — holograms ~ we  insers=Egexp(y 1)
gent materials the use of Kogelnik's expressions leads td E2 @XP(2-f) into the second-order differential equation

large errors even in such fully symmetric beam geometries(19) and use the boundary conditio¥5) and(46) to obtain
the general solution for the evolution of the signal wave

amplitude
C. Transmission gratings with absorption modulation only
In this case one hak, =0. The expression for the diffrac- Ey(F)= Ko
tion efficiency differs from Eq(38) only by a(—) sign s 4ANnggsCoh,
-2 " A +iAe'?
d)=——— :
77( ) /(1}2—‘;— §2)2+X4 w> [ein_ efin] +W[ein+ e*in]
o PO NG TN . .
X8l 2 Xei[(AerAki)/Z]g-r[eiW(g-rfd)_efiW(g-rfd)]EpO'
[~ ) PR @)

+sink? >

where we have made use again of the property that the vector
x e~ (st ap)d, (42) Ak is constrained to be parallel g so thatAk, = Ak, and

Ak;=Ak;{. The quantityW= \W? is the same as given in
Here Eq. (26), which for reflection gratings we can rewrite as
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. 2 . RN
Wi Ak +i(ast ap) ) 2 ko where we have used Eg®) and (10) andks;= —as{, Ky ;
2 16n5np959,CO05COH), =+ apf. In analogy to Eq(30), the evolution of the pump
x(Af—Ai2+2iArAicosd>), (48 ~ Wwave amplitude is obtained as

e e [2W+ (Ak, +iAk;)]eWET=D L [2W— (Ak,+iAk;)]e WET-d)
p(1)= [2W+ (Ak, +iAk)]e”™Wa+[2W— (Ak, +iAk;)]eWd

e—i[(Ak,+iAki)/Z]ZrEpo_ (49)

The diffraction efficiency of a reflection hologram is defined ) [(Akr)z—(a# ap)?
as &=
4

d?, (53

$~F=0 E-EXng. |cow and
% ) S i SIS S|, (50)
; EpoEponpdp |COSHy

Ak (ast ap)
2

2_

d. (54)

where again an obliquity factor is introduced in the defini-
tion. Inserting the complex signal wave amplitu@e) into

Eqg. (50) one obtains the general expression for the diffrac
tion efficiency of a mixed phase and absorption reflection L2

grating in anisotropic media with absorption anisotropy "= 7 (SiR(REW]d) +sinf(ImM[W]d)},  (55)

_The diffraction efficiency is found from Ed51) as

—K5(A2+AZ—2AAjsing) 1 2 _ _
16n,n,9:0,c00.c0%, R {sif(Reg'W]d) whereR is obtained from(52) and

+sinff(Im[W]d)}, (51) L1 (PN P A
2

n=

172
, (56)

where

2 2 12
_ (Aky) +(as+ap) ,

4 4
+sirf(RgW]d)} + | W2|{cosHF(Im[W]d) 06

1
{sinfP(Im[W]d) Im[W]= %4 (57)

(—<v2+§2>+m
2

(ast a’p)

—si(RgW]d)} + R W] >

sin(2 RgW]d) 0sk

04}

Ak, |
+ —— sinh(2 ImW]d)

5 +Im[W]

=900 |

ke

2

(ast ap)

2

sinh(2 Im[W]d) — sin(2 RgW]d) |.

Diffraction efficiency n

(52

The overall diffraction efficiency of mixed reflection gratings
depends again on the phase shifbetween phase and ab-
sorption grating components, as shown in Fig. 6 wheie

plotted versus the material thickness. An example of angular Thickness d[cm]
mismatch characteristics for reflection gratings is plotted as
an inset in the same figure. FIG. 6. Mixed reflection grating. Diffraction efficiency vs thick-

nessd for three values of the phase-shift anglebetween phase
and absorption grating. Parametersy, =6x107°, A;=2Xx10"5,
A=633 nm,Ak, =0, as=0.7 cmi %, @, =1.0 cmi %, ng=2.2,n,=2.0,

In analogy with Sec. IIB we can writeW? g=1.0, 9,=0.95, 6,=—170°, andg,=—40°. The inset shows the
=(v2+ £2+ix?)/d?, with +* given by Eq.(35) being now a  dependence of the diffraction efficiency on the phase mism&kch
negative real number, for d=1 cm, ¢=—90°, and the other parameters stayed the same.

B. Reflection gratings with refractive index modulation only
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where the sign§+) or (—) have to be selected in order to be a positive real number. The diffraction efficiency is then ex-
consistent with the quadrant of the complex quanfi; For  pressed as
the practically most interesting case of perfect phase match- 5

ing and no loss, Eq55) reduces to = dZ_R (sirf(REW]d) +sinfR(Im[W]d)}, (59

A, d
=tanity— v°=tanlt d
7 2\ (ngpgsgp| coYs|coshy)

172 -
(58)  With R, &, x*, Re[W], and ImW] obtained from Eqs(52),
(53), (54), (56), and (57), respectively. Under Bragg inci-
C. Reflection gratings with absorption modulation only dence one has\k,=0 andezz_o- It holds further that
_ Aa<ag, which implies /»+£<0 in this case and Eq59)
For €1=0 the quantity/? is given by Eq(43) and is now transforms for Bragg incidence into

2

14
- . (60)
T R = (21 B (ast ap)d cothy— (124 £0)— (12+ £2)cottP— (12 + £0)
|
V. PHOTOREFRACTIVE PHASE GRATINGS Multiplying each term on the right-hand side with we

In this section we use the expressions derived above an%Ptam
apply them as an example to a special kind of phase grating
that has found much attention in recent years. The photore-  A&,=—(&,-A&, - &)=—(€% A& 1. €0, (65
fractive effect[16] produces a phase grating as a result of a

photoinduced internal space-charge electric field and the lin- o ,
ear electro-optic effect. In crystalline materials the refractive""flere tﬂ)e second equality is valid because we assumed
€ 1<lI€’]l, which is usually fulfilled in photorefractive ex-

index change is usually described in terms of the change if

the real part of the inverse dielectric tensor that can be exPeriments. Using Eqg65), (61), and(20) one can now de-
pressed as a function of the scalar amplitude of the sinut€rmine the form of the coupling constaht for a photore-

soidal space-charge electric fiefid, as fractive grating
Ae =1 *fE,. (62)

_ JAGIN PN . _ 2 2
Ar=—65 €T 'epEsc__nsnpgsgpreﬁEsca

The second-rank tensdt ¢ is a function of the direction (66)

K of the photorefractive grating and takes into account the

effect of mechanical deformations of the materials due to th%v 5= SO
O - .. whereg.,=6,-d., g,=6€,-d

presence of the periodic field. It can be expressed explicitly 9s=€s Us, Jp=Cp

in its elements & as[21]

0 eff <0
r €y

p» Ns andn, are the refractive
dices seen by the signal and pump wave, respectively, and
r it Fepresents now a scalar effective electro-optic coefficient
i s N defined as
ri = ricKet Pl KiAgmBm, (62

5L 3 o 3
whereK=K/|K]| is the unit vector along the grating vector, Fef=ds 1" dp. (67)
rﬁk is the clamped third-rank electro-optic tensm;’Jr',fI is the
modified elasto-optic tensd@2], and A and By, are de-  The scalar electro-optic coefficient is therefore related di-

fined as % L —
rectly to thed-vector directions(polarization of the two

E 33 5o waves, and not to the electric-field-vector directions.
Aik:CijlejKl and Bi:ekinkKJ‘, (63)
with Cﬁm being the elastic stiffness tensor at constant elec- A. Photorefractive diffraction efficiency
tric field, ande;;, being the piezoelectric stress tensor. Equations(66) and(67) can be inserted into Eqe38) and

To be able to relate our expressions of Secs. Ill and IV t 5

hotorefracti " d t the t 5) to obtain the diffraction efficiency of photorefractive
photorefractive_gratings we need 10 express e 1ensqfansmission and reflection gratings. We give here only the

4—)1_ _ HO_ Ead . 9_1 _ N i i X X
€;=€— €, —A€ as a function of the tensak €, = con-  gpecial cases valid for phase-matched Bragg diffraction in
tained in Eq.(61). To do this we start fron&, - 3;12 land nonabsorbing materials. One gets

differentiate with respect to the electric field to obtain

1/2
77:Sin2 ) (nsnp)S/zr effEsd (68)

™ ( Os9p

A(E,-&H=0=A¢ & +& A€ " (64) 2\ | coscod,,
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for transmission grating in a medium of thicknessand action of two interfering waves. The scalar space-charge
electric field has the form
— tank| — 98 1lz(n Np) ¥ o d (69) ES{(F)=mEsexpiK -F)+c.c
7 2\ | cogcos, sip/ Teff=s o

=m(Eg, +iEs;)expiK-F)+c.c.,  (70)

for reflection gratings.
where the real component clfs() of the exp(K~F) term is
in phase with the light interference fringes generated by the
wavess andp, andEg., ,Eg; are the in-phase and 90° out-

Two-beam coupling differs from the situations treated till of-phase components of the space-charge field amplitude, re-
now in the boundary conditions. For two-beam coupling thespectively. The quantityn is a modulation index and Eq.
waves is injected and has a nonzero amplitude at the en¢70) is valid only form<1. In this section we will be limited
trance surface of the medium. Under such conditions ongy the calculation of the two-beam coupling gain in this limit
observes often an energy and/or phase transfer from on@ndepleted pump approximatiprThe modulation indexn
wave to the other, which depend on the phase relationshieeds some further consideration. In R3] and all later
between the waves and the grating. It is easy to show thaheories of the photorefractive effect, the modulation index
maximum energy coupling between the wayesnds is  was taken as the modulation of the light intensity inside the
observed when the interference fringes produceg laynds  material. This driving quantity was used to calculate the pho-
are shifted in phase by #/2 with respect to a phase grating, toexcitation rate of charge carriers with dendityas aN/ 4t

or by 0 orar with respect to an absorption gratifit]. One xlg(1l+m cosK-r”). This assumption is allowed in the case

can distinguish two different beam coupling situations. In theof isotropic materials and a transmission grating geometry.

f'r:St the two Wg.\;.GZ'EterﬁCt with a p;]reems;uffg(eld) gr:atmg qll—lowever, the rate of photoexcitation actually depends on the
that s not moditied by the waves themselves. In the secong, .|, gissipated energy and not on the net energy flux

the wavehs tr|1emselves generatef the grating e;t Wh'r::h thefy Mhrough a material. This fact is particularly evident when one
teract. Tbe atter calse occ(:jufrs, or msta;]nce, olr. P Otore_ra(l:éonsiders a reflection grating recorded by two counterpropa-
tive two-beam coupling and for many other nonlinear-opticalying waves of equal intensity. In this case there is no net

effects. c o o o
) ) . . energy flux(no light intensity in any direction but there are
We first comment on the case of fixed gratings. The in- 9y ( g y y

: : ) : still photoexcitations. It is therefore more correct to assume
gredients to solve this problem have all been given in Secs.N/ tocUn(1+ & d thus to defi th d
[l and IV. Let us suppose we want to know the amplitude of N9 of m co " and thus to definen as the modu-
the signal waves after coupling with the wave at a fixed lation of the dissipated optical energy denslilyin the ma-

transmission grating. This amplitude is a coherent superp erial. The dissipated optical energy is related to the imagi-

sition of the transmitted amplitude when the wagveés not nary dielectric tensok  [17]

present and the amplitude diffracted from the wavin di- . SR

rection of the signal wavs, when the latter has zero ampli- U(F )3 eoé(T L)€ 0 £ (1), (77)

tude at the entrance face. Therefore one first calculates the

transmitted amplitudé; using Eq.(30) letting s take the  where&(f,t) is given by Eq.(1) ande, is the permittivity of

role of the pump wave in Sec. lll. Second, the amplitédg  vacuum. Equatiori71) can be used to calculate the number
scattered fronp into the general direction of is calculated  density of mobile photoexcited charge carriers if every ab-
using Eq.(29) extracting the correct wave propagation direc-sorbed photon produces such a carrier, i.e., when the quan-
tion ES,d from Eq. (10). Finally the two waves are added and tum efficiency for photoexcitation is unity. However, in most

combined with the phase factors to obtdiiiy ;exp(ks:F) photorefractive materials the quantum efficiertpas often
+Esqg exp@lzsd-r”) as the electric-field amplitude of the wase bfeer; otbsefrve(:_ to be Icon5|detrhably Iovvler, In tthe ex}][.eme case
at the exit of the grating region. In case of perfect phaseO photoreiractive polymers the usual quantum etliciencies

L _ S are in the order of 10°~10 2 [10]. It is therefore necessary
matchingks 4=Kks and the transmitted and in-diffracted wave to replace the tens&io in Eq. (71) by a similar tensok that

are not distinguishable. In general, geometries where the lajz . o5 into account only those useful absorption processes

ter equality holds can be found also for small deviation fromy, o+ give rise to movable charge carriers. One can define the
perfect phase matching of the two coherent waves to thgaments of< as

preexistent grating. We notice that for reflection holograms
the same procedure outlined above is followed. One uses _ 0 (72)
Eqgs.(49) and(47) instead of Eqs(30) and(29) to obtain the K= Pu€ijas
transmitted and in-diffracted amplitudes. " . L

The case where a dynamic grating is recorded by the twi/neré the quantitiess,, describe the polarization depen-
interacting waves themselves is more interesting. Thesd€nce of the quantum efficiency. In E((2) no summing

waves automatically fulfill the real phase-matching condition?Ver equal ingic%s tis pgrftaCirrEed.hT?e chdaragtgtristics of the
Lo e ) nsork m rmin nductivity measure-
Ks,r —Kp,r £ K=0. We will treat here only the case where a ensoric May e rete oot DY PIOTOCONCLEHVIY meastre

A ~ ments as a function of light polarization. If the quantum ef-
phase grating is created as a result of the photorefracti ght p d

- . ciency for photogeneration of charge carriers is unity, the
effect. The theory of Kukhtarev-VinetsKi23] describes the tensorZ?? agd P gre identical. In vie%v of the above a)r/gu-

formation of a space-charge fieltf(F) = KES{f) under the mentation we can now write the useful dissipated energy as

B. Photorefractive two-beam coupling
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. > - =L m .c.r m* LiR.F T -
U(F,t)c&(F,t) - k- E5(F,t)=Ug 1+5e' 'r+78 e, = 1ol Parameter: K33/Ky)
NIV
. 1000
(73 i

where for simplicity we have used a complex modulation ‘=, 05
index m that takes fully into account all phase shifts in the

light fringes due to phase coupling between the waves. One —< | N
can assume than is real at the input surface of the medium. Ao 00 %
Using Egs.(73) and (1) we find the general expression for ;i .
the modulation of a transmission grating as ! UG id,, G
g 05t 20 \/5
m(rF) I ) X3
S 1ol \g 1/1000

2E4(NE} (F)(8s- k- 8p)e~ (et ap T

|Eo(F)|2(8,- K- 8y)e 200 T+ [E(F)|2(85- K- 8@ 2% T
(74
For small modulation one has
|Ep|%(8, K- €,)exp(—2ap - F)
> | Es|2(és' K- és)eX[i - Za'sZ' I?)
(75
and Eq.(74) simplifies to
2E(F) (&, KK-& s
m(r) S(—)) (AS — Ap) e(a )g (76)
Eo(M) (&,-%-6,)

0 15 30 a5
Angle 6 [deg]

FIG. 7. Dependence of the correcting factas (&, i- ép)/

(€,- k- €,) on the half angle between tiseandp waves in a sym-
metric geometrical configuration. Propagation in thgxs plane
with p-polarized waves is assumed, as shown in the inset. The
dashed curve folzyxyo=1 corresponds to the case of isotropic
photoexcitation, for which the conventional projection factor

=(és-ép) applies.
with T being the small-signal gain expressed as

r=2" 20 nsnp

N cosf, (82

gpareffEsm ’

Note that the modulation index that would be obtained bywhich is positive if the producteEs; is positive, and

using the light intensity as a driving term is similar

to Eq. (76) but contains the ratio n/n,)"? instead of
(& k-€,)/ (€, k-€,). Using Egs.(66), (17), and (18) and

T nsn

_ _spP
o=—— gpareffEscr

N COYq (83

neglecting any absorption modulation we obtain the coupled

wave equations for transmission grating two-beam couplin

in photorefractive materials

Es Ko RME,E el ®)i-F 7
—_— Y — —_ S

o7 U= g [CIRMEEL Wi, (77)
%o G- [—iRM*EEXe@ a9l (78)
ar P 4nyg, sc® '

whereR=n2n? 09s9pl e aNdT o7 is given by Eq.(67). If the

inequality (75) is fulfilled one can neglect the second differ-

ential equation78) and by using Eq(76) the equation for
the evolution of the signal wave amplitude becomes

4= oS kOR .
oF 'us:2n 9 a[Esc,i_lEsc,r]Esu (79
SJIs
where we have introduced the quantity
a= & &) (80)
(€p- k- €p)
Equation(79) has a solution of the form
Eo(f-T=d)=Eqe "%, (81)

QJjescribes the phase drift of the wave along the propagation
direction. We recall tha# is the angle between the Poynting

vector of the waveS and the normal to the surface It
should be noted that, while the sign®{;, does not depend
on whether the space-charge field is created in the photore-
fractive crystal by means of electron charge transport or hole
charge transport, the sign & is opposite for the two
cases. One has,;<<0 for dominant electron transport, and
E.;>0 for dominant hole transport. Therefore the sign of
the gainl is influenced accordingly. We also notice that the
constantd” and § of Egs.(82) and(83) are influenced by the
dielectric anisotropy within the factors agsandg, and are
influenced by the absorption anisotropy within the quantity
a. Figure 7 shows an example of the dependence of the cor-
recting factora of Eq. (80) on the half-angled between the
energy propagation directions of the waweandp. We have
assumed a material cut along the main axgx,,x5 of the
absorption ellipsoid and symmetric propagation in xhex;
plane, as shown in the inset of the figure. The waves have
polarization in the same plane so that only the elemeps
and k33 of the tensork are active. The different curves in
Fig. 7 are for different values of the anisotropy ratig/ «,,.

If the absorption is isotropiédashed curyethe factora re-

duces to és~ép), corresponding to the term obtained for
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isotropic theories. It can be noticed that in case of absorptiodium it has to fulfill the wave equatio(8), which translates
anisotropy the correction due to the factrcan be quite into
relevant if the directions of the optical electric field vectors

&, andep deviate from a main axis of the modified absorp- —E[(8X (K, +iK) X (K, +iK; )]e'k okt
tion tensorK For x34/kp»=1/2 the correction with respect to =k0[e r+ i i]Eee"‘r fg—kif (A1)

(es- p) is about 25% already if the deviation angles are of
the order of 20°.

We finally express the evolution of the signal wave inten-
sity I. It is obtained using Eq(82) for the gain and the
definition of the optical electric field and propagation vector

(1) and(2), which gives . 90 &
E[(EXK,) Xk, —(EXk;) Xk ]=—Ekje /- & (A2)

where we have usefi= Eé. Equation(Al) is the same as
Eqg. (9) of Sec. Il. The real part of the space-independent
terms in(Al) reads

Foi=d)=| el —2ad . =
Is(f-T=d)=Ise ' (84) Under our general assumption of moderate absorpiki (

<[k,|), we recognize Eq(A2) as the equation describing
with |so—|s(§ r=0). The same path can be followed also linear propagation in lossless anisotropic media, as can be
for two-beam coupling in a reflection grating configuration. checked in many textbook$14,15,24. The remaining
For smallm, one obtains in analogy to E¢B4) (imaginary terms of Eq.(Al) are related to the effective
. . scalar absorption constant we are looking for, they read
I(£-F=0)=I4({-F=d)e” ("2, (85) .
—IE[(8XK,) XK+ (8xK) XK ]=iEK2€ 0-6. (A3)
wherel is still given by Eq.(82) and it should be remem- o
bered that co& is negative for reflection gratings. We are considering here a boundary value problem, the wave
should have a constant intensity at the input surface of the

VI. CONCLUSIONS medium defined by the conditiajﬁ r=0 (Fig. 1). A constant

intensity implies
We have extended the coupled wave theory of Kogelnik

[1] to the case of anisotropic materials with grating vector

and medium oriented in arbitrary directions. Spatial modula- |
tion of both refractive index and absorption constant with a

common grating wave vector and an arbitrary phase shifyvhich can be fulf|lled only if the vectok is parallel to the
between each other have been allowed for. Solutions for thgyrface normaf;. One can write

wave amplitudes, diffraction efficiencies, and angular sensi-
tivities have been given in transmission and reflection con-
figurations for the case of moderately absorbing materials.
The special case of phase holograms in optically inactiv
photorefractive crystals has been considered in detail revea?/
ing simple expressions permitting one to calculate diffraction
efficiencies and small-signal two-beam coupling gains in anyihe planeg F=0, while the(—) sign holds if it enters at the

given geometrical situation. The insights provided by theplaneg F=d and exits at/-F=0. Therefore, the vectors

present approach should be particularly important for th and kI are in general, noncollinear and the wave is inho-

analysis of all anisotropic diffraction processes and also OH;O eneous even in the absence of a nonlinear arating. In
isotropic interaction of light with volume holograms re- 9 9 9-

corded in materials with strong birefringence, such as orSertlng EQ.(A5) into Eq (A3) and using the vector identity
ganic crystals, ordered polymers, and liquid crystalline cells(&xb)*¢=(a- ¢)b—(b-¢)a one gets

Eeik-‘r|(2- F=0)=const, (A4)

Ki=a(+0), (AS)

here the effective absorption constanis positive, and the
=) sign in Eq.(A5) holds if the wave enters the medium at

Y
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discussions. wheren is the refractive index seen by the wave and we have
usedk, =konk, . We are looking for an expression far,
which is obtained by multiplying EqA6) on the left byé

We treat here the problem of linear propagation in a me- A A A a R R
dium with a complex dielectric constant with the aim of 2ak0n[(é.g)(kr-é)—(kr.g)]z—ké(é?i@é), (A7)
extracting a relationship between the imaginary part of the
dielectric tensore? and the effective amplitude absorption The expression in the square brackets on the left-hand side is

constantsa used in this paper. We consider a wave of theyg|ateq again to the unit vectdralong the energy propaga-
form & eXFf'(k F—ot)] with complex wave vector of the tion vector(Poynting vector of the wave and can be rewrit-
form k= k +|k If this wave is an eigenwave of the me- ten as

APPENDIX: LINEAR PROPAGATION
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N 23 3Aa3 A B L ing Egs. (A7) and (A8) we obtain finally the value ofx
[(€-O)(K €)= (k.- ) ]=¢[E(k, - €)=k ]=—g({-0) Wﬁichqfuhgills)Eq. (3)(, th)at is Y

S , A8 A A - -

9 cos? (A8) k(608 m(ED-9

~ 2ng[cosy]  nng[cos’

(A9)

where the second equality makes use of BEdf) and the

angle 6 is defined by the last equality. We recall thgt where\ is the vacuum wavelength. EquatiéA9) can also

NS N be used to derive the elements of the tengdrfrom mea-
=¢@-d, with d being the unit vector pointing in the direction surements of the amplitude absorption constanfor se-
of the dielectric displacement vect(polarizatior). Combin-  lected wave propagation directions and polarizations.
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